Skip to main content

Advertisement

Log in

Clinical impact of aneuploidy on gastric cancer patients

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gastric cancer is a leading cause of death worldwide. Nowadays, complete surgical resection and TNM at diagnosis are the main prognostic factors. In spite of this, many patients will have a recurrence after surgery and die within a few months or years. That means that we need more accurate prognostic factors to design specific approaches for individual patients. Chromosome instability is a feature of gastric cancer commonly associated to chromosomal aberrations that leads to major modifications of DNA content globally termed as aneuploidy. In this regard, many authors’ opinions diverge regarding the clinical impact of aneuploidy. This review will summarise data on the clinical impact of aneuploidy on clinical practice, the biological mechanisms that underlie chromosomal instability that induces aneuploidy and the relevance of specific chromosomal aneuploidy to cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hohenberger P, Gretschel S (2003) Gastric cancer. Lancet 362:305–315

    Article  PubMed  Google Scholar 

  2. Correa P, Piazuelo MB, Camargo MC (2004) The future of gastric cancer prevention. Gastric Cancer 7:9–16

    Article  PubMed  Google Scholar 

  3. Correa P, Haenszel W, Cuello C et al (1975) A model for gastric cancer epidemiology. Lancet 2:58–60

    Article  PubMed  CAS  Google Scholar 

  4. Cahill DP, Lengauer C, Yu J et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303

    Article  PubMed  CAS  Google Scholar 

  5. Weaver BA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18:658–667

    Article  PubMed  CAS  Google Scholar 

  6. Yonemura Y, Ooyama S, Sugiyama K et al (1990) Retrospective analysis of the prognostic significance of DNA ploidy patterns and S-phase fraction in gastric carcinoma. Cancer Res 50:509–514

    PubMed  CAS  Google Scholar 

  7. Rugge M, Sonego F, Panozzo M et al (1994) Pathology and ploidy in the prognosis of gastric cancer with no extranodal metastasis. Cancer 73:1127–1133

    Article  PubMed  CAS  Google Scholar 

  8. Sakusabe M, Kodama M, Sato Y et al (1996) Clinical significance of DNA ploidy pattern in stage III gastric cancer. World J Surg 20:27–31

    Article  PubMed  CAS  Google Scholar 

  9. Victorzon M, Lundin J, Haglund C et al (1996) A risk score for predicting outcome in patients with gastric cancer, based on stage, sialyl-Tn immunoreactivity and ploidy: a multivariate analysis. Int J Cancer 67:190–193

    Article  PubMed  CAS  Google Scholar 

  10. Victorzon M, Roberts PJ, Haglund C et al (1996) Ki-67 immunoreactivity, ploidy and S-phase fraction as prognostic factors in patients with gastric carcinoma. Oncology 53:182–191

    Article  PubMed  CAS  Google Scholar 

  11. Abad M, Ciudad J, Rincon MR et al (1998) DNA aneuploidy by flow cytometry is an independent prognostic factor in gastric cancer. Anal Cell Pathol 16:223–231

    PubMed  CAS  Google Scholar 

  12. Setala LP, Nordling S, Kosma VM et al (1997) Comparison of DNA ploidy and S-phase fraction with prognostic factors in gastric cancer. Anal Quant Cytol Histol 19:524–532

    PubMed  CAS  Google Scholar 

  13. Danesi DT, Spano M, Fabiano A et al (2000) Flow cytometric DNA ploidy, p53, PCNA, and c-erbB-2 protein expressions as predictors of survival in surgically resected gastric cancer patients. Cytometry 42:27–34

    Article  PubMed  CAS  Google Scholar 

  14. Ohyama S, Yonemura Y, Miyazaki I (1992) Proliferative activity and malignancy in human gastric cancers. Significance of the proliferation rate and its clinical application. Cancer 69:314–321

    Article  PubMed  CAS  Google Scholar 

  15. Lee KH, Lee JS, Lee JH et al (1999) Prognostic value of DNA flow cytometry in stomach cancer: a 5-year prospective study. Br J Cancer 79:1727–1735

    Article  PubMed  CAS  Google Scholar 

  16. Esteban F, de Vega DS, Garcia R et al (1999) DNA content by flow cytometry in gastric carcinoma: pathology, ploidy and prognosis. Hepatogastroenterology 46:2039–2043

    PubMed  CAS  Google Scholar 

  17. Russo A, Bazan V, Migliavacca M et al (2001) DNA aneuploidy and high proliferative activity but not K-ras-2 mutations as independent predictors of clinical outcome in operable gastric carcinoma: results of a 5-year Gruppo Oncologico dell’Italia Meridonale (GDIM) prospective study. Cancer 92:294–302

    Article  PubMed  CAS  Google Scholar 

  18. Takeno SS, Leal MF, Lisboa LC et al (2009) Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet Cytogenet 190:1–7

    Article  PubMed  CAS  Google Scholar 

  19. Doak SH, Jenkins GJ, Parry EM et al (2003) Chromosome 4 hyperploidy represents an early genetic aberration in premalignant Barrett’s oesophagus. Gut 52:623–628

    Article  PubMed  CAS  Google Scholar 

  20. Williams L, Jenkins GJ, Doak SH et al (2005) Fluorescence in situ hybridisation analysis of chromosomal aberrations in gastric tissue: the potential involvement of Helicobacter pylori. Br J Cancer 92:1759–1766

    Article  PubMed  CAS  Google Scholar 

  21. Pihan GA, Wallace J, Zhou Y et al (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398–1404

    PubMed  CAS  Google Scholar 

  22. Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17:215–221

    Article  PubMed  CAS  Google Scholar 

  23. Bischoff JR, Anderson L, Zhu Y et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  PubMed  CAS  Google Scholar 

  24. Zhou H, Kuang J, Zhong L et al (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  PubMed  CAS  Google Scholar 

  25. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3:51–62

    Article  PubMed  CAS  Google Scholar 

  26. Azimzadeh J, Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120:2139–2142

    Article  PubMed  CAS  Google Scholar 

  27. Jang YJ, Kim YS, Kim WH (2006) Oncogenic effect of Polo-like kinase 1 expression in human gastric carcinomas. Int J Oncol 29:589–594

    PubMed  CAS  Google Scholar 

  28. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    Article  PubMed  CAS  Google Scholar 

  29. Abrieu A, Magnaghi-Jaulin L, Kahana JA et al (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274:246–248

    Article  PubMed  CAS  Google Scholar 

  31. Taylor SS, Ha E, McKeon F (1998) The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 142:1–11

    Article  PubMed  CAS  Google Scholar 

  32. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    Article  PubMed  CAS  Google Scholar 

  33. Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  PubMed  CAS  Google Scholar 

  34. Hanks S, Coleman K, Reid S et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161

    Article  PubMed  CAS  Google Scholar 

  35. Matsuura S, Matsumoto Y, Morishima K et al (2006) Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A 140:358–367

    PubMed  Google Scholar 

  36. Bohers E, Sarafan-Vasseur N, Drouet A et al (2008) Gradual reduction of BUBR1 protein levels results in premature sister-chromatid separation then in aneuploidy. Hum Genet 124:473–478

    Article  PubMed  CAS  Google Scholar 

  37. Kim HS, Park KH, Kim SA et al (2005) Frequent mutations of human Mad2, but not Bub1, in gastric cancers cause defective mitotic spindle checkpoint. Mutat Res 578:187–201

    PubMed  CAS  Google Scholar 

  38. Nakagawa H, Yokozaki H, Oue N et al (2002) No mutations of the Bub1 gene in human gastric and oral cancer cell lines. Oncol Rep 9:1229–1232

    PubMed  CAS  Google Scholar 

  39. Babu JR, Jeganathan KB, Baker DJ et al (2003) Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 160:341–353

    Article  PubMed  CAS  Google Scholar 

  40. Dai W, Wang Q, Liu T et al (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445

    Article  PubMed  CAS  Google Scholar 

  41. Michel LS, Liberal V, Chatterjee A et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  PubMed  CAS  Google Scholar 

  42. Iwanaga Y, Chi YH, Miyazato A et al (2007) Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res 67:160–166

    Article  PubMed  CAS  Google Scholar 

  43. Grabsch H, Takeno S, Parsons WJ et al (2003) Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer: association with tumour cell proliferation. J Pathol 200:16–22

    Article  PubMed  CAS  Google Scholar 

  44. Cimini D, Howell B, Maddox P et al (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–527

    Article  PubMed  CAS  Google Scholar 

  45. Cimini D, Wan X, Hirel CB et al (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16:1711–1718

    Article  PubMed  CAS  Google Scholar 

  46. Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16:1705–1710

    Article  PubMed  CAS  Google Scholar 

  47. Cimini D, Fioravanti D, Salmon ED et al (2002) Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J Cell Sci 115:507–515

    PubMed  CAS  Google Scholar 

  48. Kollareddy M, Dzubak P, Zheleva D et al (2008) Aurora kinases: structure, functions and their association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152:27–33

    PubMed  CAS  Google Scholar 

  49. Macarulla T, Ramos FJ, Tabernero J (2008) Aurora kinase family: a new target for anticancer drug. Recent Pat Anticancer Drug Discov 3:114–122

    Article  PubMed  CAS  Google Scholar 

  50. Cheung CH, Coumar MS, Hsieh HP et al (2009) Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs 18:379–398

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura Y, Tanaka F, Haraguchi N et al (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549

    Article  PubMed  CAS  Google Scholar 

  52. Shimo A, Tanikawa C, Nishidate T et al (2008) Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70

    PubMed  CAS  Google Scholar 

  53. Sandall S, Severin F, McLeod IX et al (2006) A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127:1179–1191

    Article  PubMed  CAS  Google Scholar 

  54. Wang TT, Qian XP, Liu BR (2007) Survivin: potential role in diagnosis, prognosis and targeted therapy of gastric cancer. World J Gastroenterol 13:2784–2790

    PubMed  CAS  Google Scholar 

  55. Wang Y, Zhou X, Zhu H et al (2005) Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene 24:6637–6645

    Article  PubMed  CAS  Google Scholar 

  56. Nishigaki R, Osaki M, Hiratsuka M et al (2005) Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5:3205–3213

    Article  PubMed  CAS  Google Scholar 

  57. Williams L, Somasekar A, Davies DJ et al (2009) Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer. Mutat Res [Epub ahead of print]

  58. Yang YC, Wang SW, Wu IC et al (2009) A tumorigenic homeobox (HOX) gene expressing human gastric cell line derived from putative gastric stem cell. Eur J Gastroenterol Hepatol [Epub ahead of print]

  59. Liang Z, Zeng X, Gao J et al (2008) Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients. BMC Cancer 8:363

    Article  PubMed  CAS  Google Scholar 

  60. van Dekken H, van Marion R, Vissers KJ et al (2008) Molecular dissection of the chromosome band 7q21 amplicon in gastroesophageal junction adenocarcinomas identifies cyclin-dependent kinase 6 at both genomic and protein expression levels. Genes Chromosomes Cancer 47:649–656

    Article  PubMed  CAS  Google Scholar 

  61. Calcagno DQ, Guimaraes AC, Leal MF et al (2009) MYC insertions in diffuse-type gastric adenocarcinoma. Anticancer Res 29:2479–2483

    PubMed  CAS  Google Scholar 

  62. Vauhkonen H, Vauhkonen M, Sipponen P et al (2007) Oligonucleotide array comparative genomic hybridization refines the structure of 8p23.1, 17q12 and 20q13.2 amplifications in gastric carcinomas. Cytogenet Genome Res 119:39–45

    Article  PubMed  CAS  Google Scholar 

  63. Yang SH, Seo MY, Jeong HJ et al (2005) Gene copy number change events at chromosome 20 and their association with recurrence in gastric cancer patients. Clin Cancer Res 11:612–620

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Sánchez-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Pérez, I., García Alonso, P. & Belda Iniesta, C. Clinical impact of aneuploidy on gastric cancer patients. Clin Transl Oncol 11, 493–498 (2009). https://doi.org/10.1007/s12094-009-0393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0393-z

Keywords

Navigation