Skip to main content

Advertisement

Log in

Trichomonas vaginalis: a possible foe to prostate cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Prostate cancer (PCA) is the most common malignancy in men in USA, and the role of Trichomonas vaginalis (T. vag) in the development of PCA is still controversial. Clonogenic assay, PCNA staining, TUNEL staining and caspase-3 activity assay were used to investigate the in vitro role of T. vag in human prostate cancer. We further investigated the possible molecular mechanisms using RT-PCR and immunohistochemical staining. Culture supernatant of T. vag inhibits growth of PC-3 prostate cancer cells, and this correlated with upregulation of p21. Culture supernatant of T. vag induced apoptosis of PC-3 cells, and this correlated with downregulation of Bcl-2. The growth inhibition effect of culture supernatant of T. vag is also demonstrated in another prostate cancer cell line DU145, suggesting that its effect is not specific to one prostate cancer cell line. Culture supernatant of T. vag inhibits growth of prostate cancer by inhibition of proliferation and promotion of apoptosis. Such a study might be helpful to address the association between PCA and infection of T. vag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: Cancer J Clin. 2015;65(1):5–29.

    Google Scholar 

  2. Crawford ED. Epidemiology of prostate cancer. Urology. 2003;62(6):3–12.

    Article  PubMed  Google Scholar 

  3. Dirkx M, Boyer MP, Pradhan P, Brittingham A, Wilson WA. Expression and characterization of a beta-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC Biochem. 2014;15(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11(2):300–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Ocfemia MCB, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis. 2013;40(3):187–93.

    Article  PubMed  Google Scholar 

  6. Workowski KA, Berman SM. Centers for disease control and prevention sexually transmitted disease treatment guidelines. Clin Infect Dis. 2011;53(Suppl 3):S59–63.

    Article  PubMed  Google Scholar 

  7. Wynder EL, Mabuchi K, Whitmore WF. Epidemiology of cancer of the prostate. Cancer. 1971;28(2):344–60.

    Article  CAS  PubMed  Google Scholar 

  8. Harkness A. Discussion on non-specific prostatitis. Proc Royal Soc Med. 1955;48(5):413–24.

    Google Scholar 

  9. Perl G, Schapira H, Ragazzoni H. Male urogenital trichomoniasis. J Mount Sinai Hospital, New York. 1965;32:495.

    CAS  Google Scholar 

  10. Gardner Jr WA, Culberson DE. Pathology of urogenital trichomoniasis in men. In: Trichomonads parasitic in humans. New York: Springer; 1990, p. 291–6.

  11. Smith C, Gardner W Jr. Inflammation-proliferation: possible relationships in the prostate. Prog Clin Biol Res. 1986;239:317–25.

    Google Scholar 

  12. Twu O, Dessí D, Vu A, Mercer F, Stevens GC, De Miguel N, et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci. 2014;111(22):8179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caini S, Gandini S, Dudas M, Bremer V, Severi E, Gherasim A. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2014;38(4):329–38. doi:10.1016/j.canep.2014.06.002.

    Article  PubMed  Google Scholar 

  14. Donders GG, Depuydt CE, Bogers J-P, Vereecken AJ. Association of Trichomonas vaginalis and cytological abnormalities of the cervix in low risk women. PLoS One. 2013;8(12):e86266.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Groom H, Warren AY, Neal DE, Bishop KN. No evidence for infection of UK prostate cancer patients with XMRV, BK virus, Trichomonas vaginalis or human papilloma viruses. PLoS One. 2012;7(3):e34221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alderete J, Pearlman E. Pathogenic Trichomonas vaginalis cytotoxicity to cell culture monolayers. Br J Vener Dis. 1984;60(2):99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert R, Elia G, Beach D, Klaessig S, Singh B. Cytopathogenic effect of Trichomonas vaginalis on human vaginal epithelial cells cultured in vitro. Infect Immun. 2000;68(7):4200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guenthner PC, Secor WE, Dezzutti CS. Trichomonas vaginalis-induced epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1. Infect Immun. 2005;73(7):4155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rasmussen S, Nielsen M, Lind I, Rhodes J. Morphological studies of the cytotoxicity of Trichomonas vaginalis to normal human vaginal epithelial cells in vitro. Genitourin Med. 1986;62(4):240–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rendón-Maldonado JG, Espinosa-Cantellano M, González-Robles A, Martinez-Palomo A. Trichomonas vaginalis: in vitrophagocytosis of lactobacilli, vaginal epithelial cells, leukocytes, and erythrocytes. Exp Parasitol. 1998;89(2):241–50.

    Article  PubMed  Google Scholar 

  21. Quan J-H, Kang B-H, Cha G-H, Zhou W, Koh Y-B, Yang J-B, et al. Trichonomas vaginalis metalloproteinase induces apoptosis of SiHa cells through disrupting the Mcl-1/Bim and Bcl-xL/Bim complexes. PLoS one. 2014;9(10):e110659.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salvador-Membreve DMC, Jacinto SD, Rivera WL. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549. Exp Parasitol. 2014;147:33–40.

    Article  CAS  PubMed  Google Scholar 

  23. Beal C, Goldsmith R, Kotby M, Sherif M, El-Tagi A, Farid A, et al. The plastic envelope method, a simplified technique for culture diagnosis of trichomoniasis. J Clin Microbiol. 1992;30(9):2265–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen TJ, Pradhan P, Brittingham A, Wilson WA. Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax. J Eukaryot Microbiol. 2012;59(4):359–66.

    Article  CAS  PubMed  Google Scholar 

  25. Tan S, Singh M, Yap E, Ho L, Moe K, Howe J, et al. Colony formation of Blastocystis hominis in soft agar. Parasitol Res. 1996;82(4):375–7.

    Article  CAS  PubMed  Google Scholar 

  26. Fang Y, Bradley MJ, Cook KM, Herrick EJ, Nicholl MB. A potential role for resveratrol as a radiation sensitizer for melanoma treatment. J Surg Res. 2013;183(2):645–53.

    Article  CAS  PubMed  Google Scholar 

  27. Fang Y, DeMarco VG, Nicholl MB. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci. 2012;103(6):1090–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fang Y, Herrick EJ, Nicholl MB. A possible role for perforin and granzyme B in resveratrol-enhanced radiosensitivity of prostate cancer. J Androl. 2012;33(4):752–60.

    Article  CAS  PubMed  Google Scholar 

  29. Fang Y, Moore BJ, Bai Q, Cook KM, Herrick EJ, Nicholl MB. Hydrogen peroxide enhances radiation-induced apoptosis and inhibition of melanoma cell proliferation. Anticancer Res. 2013;33(5):1799–807.

    CAS  PubMed  Google Scholar 

  30. Fang Y, Sharp GC, Yagita H, Braley-Mullen H. A critical role for TRAIL in resolution of granulomatous experimental autoimmune thyroiditis. J Pathol. 2008;216(4):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang Y, Wei Y, DeMarco V, Chen K, Sharp GC, Braley-Mullen H. Murine FLIP transgene expressed on thyroid epithelial cells promotes resolution of granulomatous experimental autoimmune thyroiditis in DBA/1 mice. Am J Pathol. 2007;170(3):875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson D, Walker C. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39(1):295–312.

    Article  CAS  PubMed  Google Scholar 

  33. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15(5):2612–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79(4):551–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sherr CJ. D-type cyclins. Trends Biochem Sci. 1995;20(5):187–90.

    Article  CAS  PubMed  Google Scholar 

  36. Fang Y, Chen X, Bai Q, Qin C, Mohamud AO, Zhu Z, et al. IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol. 2015;111(8):969–74.

    Article  CAS  PubMed  Google Scholar 

  37. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270(5239):1189–92.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456.

    Article  CAS  PubMed  Google Scholar 

  39. Fang Y, Braley-Mullen H. Cultured murine thyroid epithelial cells expressing transgenic Fas-associated death domain-like interleukin-1β converting enzyme inhibitory protein are protected from Fas-mediated apoptosis. Endocrinology. 2008;149(7):3321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nicholl MB, Ledgewood CL, Chen X, Bai Q, Qin C, Cook KM, et al. Il-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor. Cytokine. 2014;70(2):126–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Des Moines University for Yujiang Fang, M.D. Ph.D. (Iowa Science Foundation Grant ISF 16-8, IOER 05-14-01 and IOER 112-3749). Kristoffer T. Davidson was supported by Mentored Research Program from Des Moines University (IOER 112-3113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Davidson, K.T., Brittingham, A. et al. Trichomonas vaginalis: a possible foe to prostate cancer. Med Oncol 33, 115 (2016). https://doi.org/10.1007/s12032-016-0832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0832-y

Keywords

Navigation