Skip to main content

Advertisement

Log in

MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Human microRNA-9 (miR-9) has been reported to be involved in the metastasis of several malignancies including brain breast cancer. However, its role in the metastasis of colorectal cancer (CRC) remains to be revealed. Here, we evaluated miR-9 expression in metastatic CRC and investigated its effects on the motility and proliferation of RKO cells. The expressions of miR-9 in 15 primary CRC specimens without distant metastasis (NM group) and 10 primary CRC specimens (M group) with distant metastasis (M group) were determined by quantitative real-time PCR. The alternations in the motility and morphology of RKO cells before and after miR-9 transfection were analyzed by migration assay and F-actin staining. The relationship between miR-9 and α-catenin was identified by Western blotting. Cell growth was examined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide) assay. Significant difference of miR-9 expression was observed in M group compared to the NM group (P < 0.001). Ectopic expression of miR-9 enhanced the motility of RKO cells as well as changed their morphological appearance, while cell growth remained unchanged. The overexpression of miR-9 could also down-regulate α-catenin expression. These data suggest that miR-9 may potentially participate in the metastatic process of CRC though facilitating cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blumgart LH, Fong Y. Surgical options in the treatment of hepatic metastasis from colorectal cancer. Curr Probl Surg. 1995;32(5):333–421.

    Article  PubMed  CAS  Google Scholar 

  2. Newland RC, Dent OF, Chapuis PH, Bokey EL. Clinicopathologically diagnosed residual tumor after resection for colorectal cancer. A 20-year prospective study. Cancer. 1993;72(5):1536–42.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010;29(7):937–48.

    Article  PubMed  CAS  Google Scholar 

  4. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–56.

    PubMed  CAS  Google Scholar 

  5. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009;19(3):375–83.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng J, Xue H, Wang T, Jiang Y, Liu B, et al. miR-21 downregulates the tumor suppressor P12(CDK2AP1) and stimulates cell proliferation and invasion. J Cell Biochem. 2011;112(3):872–80.

    Article  PubMed  CAS  Google Scholar 

  7. Roybal JD, Zang Y, Ahn YH, Yang Y, Gibbons DL, et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res. 2011;9(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  8. Fowler A, Thomson D, Giles K, Maleki S, Mreich E, et al. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer. 2011;47(6):953–63.

    Article  PubMed  CAS  Google Scholar 

  9. Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, et al. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer. 2011 [Epub ahead of print].

  10. Li X, Zhang Y, Shi Y, Dong G, Liang J, et al. MicroRNA-107, an oncogene MicroRNA that regulates tumor invasion and metastasis by targeting DICER1 in gastric cancer: MiR-107 promotes gastric cancer invasion and metastasis. J Cell Mol Med. 2011 [Epub ahead of print].

  11. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007;67(17):7972–6.

    Article  PubMed  CAS  Google Scholar 

  12. Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007;13(8):1172–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kong W, Yang H, He L, Zhao JJ, Coppola D, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–84.

    Article  PubMed  CAS  Google Scholar 

  14. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–46.

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  PubMed  CAS  Google Scholar 

  16. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 2008;28(53):14341–6.

    Article  PubMed  CAS  Google Scholar 

  17. Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, et al. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res. 2010;38(20):6895–905.

    Article  PubMed  CAS  Google Scholar 

  18. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  19. Breen E, Steele G Jr, Mercurio AM. Role of the E-cadherin/alpha-catenin complex in modulating cell–cell and cell–matrix adhesive properties of invasive colon carcinoma cells. Ann Surg Oncol. 1995;2(5):378–85.

    Article  PubMed  CAS  Google Scholar 

  20. Aberle H, Butz S, Stappert J, Weissig H, Kemler R, et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci. 1994;107(Pt 12):3655–63.

    PubMed  CAS  Google Scholar 

  21. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA. 1995;92(19):8813–7.

    Article  PubMed  CAS  Google Scholar 

  22. Pappas DJ, Rimm DL. Direct interaction of the C-terminal domain of alpha-catenin and F-actin is necessary for stabilized cell-cell adhesion. Cell Commun Adhes. 2006;13(3):151–70.

    Article  PubMed  Google Scholar 

  23. Gofuku J, Shiozaki H, Tsujinaka T, Inoue M, Tamura S, et al. Expression of E-cadherin and alpha-catenin in patients with colorectal carcinoma. Correlation with cancer invasion and metastasis. Am J Clin Pathol. 1999;111(1):29–37.

    PubMed  CAS  Google Scholar 

  24. Kitagawa T, Matsumoto K, Nagafuchi A, Tsukita S, Suzuki H. Co-expression of E-cadherin and alpha-catenin molecules in colorectal cancer. Surg Today. 1999;29(6):511–8.

    Article  PubMed  CAS  Google Scholar 

  25. Raftopoulos I, Davaris P, Karatzas G, Karayannacos P, Kouraklis G. Level of alpha-catenin expression in colorectal cancer correlates with invasiveness, metastatic potential, and survival. J Surg Oncol. 1998;68(2):92–9.

    Article  PubMed  CAS  Google Scholar 

  26. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 2005;123(5):903–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Lun Zhou from the Second Affiliated Hospital of Zhejiang University helping with analysis of clinical data. We thank Dr. Hongchuan Jin and Dr. Ajibade, Adebusola Abosede for helpful comments on the manuscript. This work was supported by grants from the National Natural Science Foundation of China (No. 81000892) and Zhejiang Provincial Natural Science Foundation of China (No. Y2100073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zheng or Weiting Ge.

Additional information

Liang Zhu and Huarong Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Chen, H., Zhou, D. et al. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 29, 1037–1043 (2012). https://doi.org/10.1007/s12032-011-9975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-9975-z

Keywords

Navigation