Skip to main content

Advertisement

Log in

Effects of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of ovarian carcinoma in vivo

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

New therapies against cancer are based on targeting cyclooxygenase-2 (COX-2). Whether COX-2 inhibitor therapy would be beneficial in the prevention and/or treatment of ovarian cancer still remains unclear. This study was designed to investigate whether nimesulide, a COX-2 selective inhibitor, could suppress tumor growth in implanted ovarian carcinoma mice and to explore the molecular mechanisms. Human ovarian SKOV-3 carcinoma cells xenograft-bearing mice were treated with nimesulide 62.5 mg/kg or 250 mg/kg alone i.g., daily for 21 days. Microvessel density (MVD) of ovarian carcinoma was determined with anti-CD34 as the label. Prostaglandin E2 (PGE2) levels were also determined by ELISA. In addition, the expression of COX-2 and COX-1 at protein and mRNA levels in the control groups was also detected by immunohistochemistry and reverse-transcription polymerase chain reaction (RT-PCR). Nimesulide treatment showed a dose-dependent growth-inhibitory effect of human ovarian SKOV-3 tumors. The inhibitory rates in nimesulide 62.5 mg/kg group and 250 mg/kg group were 20.40% and 50.55% respectively, however, which is not significant statistically compared with that of control group (P > 0.05). In treatment groups, nimesulide significantly reduced intratumor PGE2 levels (all, P < 0.01). Microvessel densities in treatment groups were 61.20 ± 1.67 (62.5 mg/kg) and 66.27 ± 1.20 (250 mg/kg), which are significant statistically compared with that of control group (79.97 ± 1.07) (all, P < 0.01). However, COX-1, not COX-2, mRNA, and protein levels are elevated in tumor tissues. Nimesulide decreased microvessel density is associated with the reduction of PGE2 levels but without affecting growth inhibition and the expression of COX-2. Importantly, tumor growth implanted in SKOV-3 mice was not significantly attenuated suggesting that COX-1 in ovarian carcinoma tissue also has an important role in tumor growth. These findings may implicate COX-1 as a suitable target for the treatment of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ozols RF. Recurrent ovarian cancer: evidence-based treatment. J Clin Oncol 2002;20:1161–63.

    PubMed  Google Scholar 

  2. Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  3. Vane J. Towards a better aspirin. Nature (Lond.) 1994;367:215–16.

    Article  CAS  Google Scholar 

  4. Williams CS, Smalley W, DuBois RN. Aspirin use and potential mechanisms for colorectal cancer prevention. J Clin Investig 1997;100:1325–29.

    Article  PubMed  CAS  Google Scholar 

  5. Landen CN Jr, Mathur SP, Richardson MS, Creasman WT. Expression of cyclooxygenase-2 in cervical, endometrial, and ovarian malignancies. Am J Obstet Gynecol 2003;188:1174–76.

    Article  PubMed  CAS  Google Scholar 

  6. Shigemasa K, et al. Expression of cyclooxygenase-2 and its relationship to p53 accumulation in ovarian adenocarcinomas. Int J Oncol 2003;22:99–105.

    PubMed  CAS  Google Scholar 

  7. Li S, Miner K, Fannin R, Barrett JC, Davis BJ. Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium. Gynecol Oncol 2004;92:622–27.

    Article  PubMed  CAS  Google Scholar 

  8. Khalifeh I, et al. Expression of Cox-2, CD34, Bcl-2, and p53 and survival in patients with primary peritoneal serous carcinoma and primary ovarian serous carcinoma. Int J Gynecol Pathol. 2004;23:162–9.

    Article  PubMed  Google Scholar 

  9. Denkert C, et al. Expression of cyclooxygenase-2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol 2002;160:893–903.

    PubMed  CAS  Google Scholar 

  10. Erkinheimo TL, et al. Elevated cyclooxygenase-2 expression is associated with altered expression of p53 and SMAD4, amplification of HER-2/neu, and poor outcome in serous ovarian carcinoma. Clin Cancer Res 2004;10:538–45.

    Article  PubMed  CAS  Google Scholar 

  11. Baoping Y, Guoyong H, Jieping Y, Zongxue R, Hesheng L. Cyclooxygenase-2 inhibitor nimesulide suppresses telomerase activity by blocking Akt/PKB activation in gastric cancer cell line. Dig Dis Sci 2004;49:948–53.

    Article  PubMed  Google Scholar 

  12. Bottone FG Jr, Martinez JM, Alston-Mills B, Eling TE. Gene modulation by COX-1 and COX-2 specific inhibitors in human colorectal carcinoma cancer cells. Carcinogenesis 2004;25:349–57.

    Article  PubMed  CAS  Google Scholar 

  13. Kitamura T, Itoh M, Noda T, Matsuura M, Wakabayashi K. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. Int J Cancer 2004;109:576–80.

    Article  PubMed  CAS  Google Scholar 

  14. Nikitin AY, Hamilton TC. Modeling ovarian cancer in the mouse. In: Mohan RM, editor. Research Advances in Cancer. Kerala: Global Research Network; 2005;pp. 49–59.

    Google Scholar 

  15. Masferrer JL, et al. Antiangiogentic and antitumor of Cyclooxygenase-2 inhibitors. Cancer Res 2000;60:1306–11.

    PubMed  CAS  Google Scholar 

  16. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 2004;31:2–11.

    Article  PubMed  CAS  Google Scholar 

  17. Thun MJ, Namboodiri M, Calle EE, Flanders WD, Health CW Jr. Aspirin use and Risk of fatal cancer. Cancer Res 1993;52:1322–27.

    Google Scholar 

  18. Joarder FS, Abou-lssa H, Robertson FM, Parrett ML, Alshafie G, Harris RW. Growth arrest of DMBA-induced mammary carcinogenesis with ibuprofen treatment in female Sprague-Dawley rats. Oncol Rep 1997;4:1271–73.

    CAS  Google Scholar 

  19. Yamamoto K, Kitayama W, Denda A, Morisaki A, Kuniyasu H, Kirita T. Inhibitory effects of selective cyclooxygenase-2 inhibitors, nimesulide and etodolac, on the development of squamous cell dysplasias and carcinomas of the tongue in rats initiated with 4-nitroquinoline 1-oxide. Cancer Lett 2003;199:121–29.

    Article  PubMed  CAS  Google Scholar 

  20. Williams CS, Watson AJM, Sheng H, Helou R, Shao J, DuBois RN. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 2000;60:6045–51.

    PubMed  CAS  Google Scholar 

  21. Wei L, Ru-jun X, Li-hui J, Jingfeng S, Xiang L, Bei F. Expression of cyclooxygenase-2 and inducible nitric oxide synthase correlates with tumor angiogenesis in endometrial carcinoma. Med Oncol 2005;22:63–70.

    Article  Google Scholar 

  22. Weidner N, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84:1875–87.

    Article  PubMed  CAS  Google Scholar 

  23. Trifan OC, et al. Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 2002;62:5778–84.

    PubMed  CAS  Google Scholar 

  24. Levy GN. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J 1997;11:234–47.

    PubMed  CAS  Google Scholar 

  25. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta 1996;1299:125–140.

    PubMed  Google Scholar 

  26. Masferrer JL, Isakson PC, Seibert K. Cyclooxygenase-2inhibitors: a new class of anti-inflammatory agents that spare the gastrointestinal tract. Gastroenterol Clin North Am 1996, 25:363–72.

    Article  PubMed  CAS  Google Scholar 

  27. Hazelton DA, Hamilton TC. Vascular endothelial growth factor on ovarian cancer. Curr Oncol Rep 1999;1:59–63.

    Article  PubMed  CAS  Google Scholar 

  28. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic seich during tumorigenesis. Cell 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  29. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002;94:252–66.

    PubMed  CAS  Google Scholar 

  30. Altorki NK, Subbaramaiah K, Dannenberg AJ. COX-2 inhibition in upper aerodigestive tract tumors. Semin Oncol 2004;31:30–5.

    Article  PubMed  CAS  Google Scholar 

  31. Chang SH, Liu CH, Conway R, et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 2004;101:591–96.

    Article  PubMed  CAS  Google Scholar 

  32. Gupta RA, et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res 2003;63:906–11.

    PubMed  CAS  Google Scholar 

  33. Daikoku T, Wang D, Tranguch S, Morrow JD, Orsulic S, DuBois RN, Dey SK. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res 2005;65:3735–44.

    Article  PubMed  CAS  Google Scholar 

  34. Daikoku T, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res 2006;66:2527–31.

    Article  PubMed  CAS  Google Scholar 

  35. Narko K, Ristimaki A, MacPheeM, Smith E, Haudenschild CC, Hla T. Tumorigenic transformation of immortalized ECV endothelial cells by cyclooxygenase-1 overexpression. J Biol Chem 1997;272:21455–460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, Hh., Xu, Rj. et al. Effects of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of ovarian carcinoma in vivo. Med Oncol 25, 172–177 (2008). https://doi.org/10.1007/s12032-007-9016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-007-9016-0

Keywords

Navigation