Skip to main content

Advertisement

Log in

Effects of Bone Matrix Proteins on Fracture and Fragility in Osteoporosis

  • Skeletal Biology (D Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone mineral density alone cannot reliably predict fracture risk in humans and laboratory animals. Therefore, other factors including the quality of organic bone matrix components and their interactions may be of crucial importance to understanding of fragility fractures. Emerging research evidence shows, that in addition to collagen, certain noncollagenous proteins (NCPs) play a significant role in the structural organization of bone and influence its mechanical properties. However, their contribution to bone strength still remains largely undefined. Collagen and NCPs undergo different post-translational modifications, which alter the quality of the extracellular matrix and the response of bone to mechanical load. The primary focus of this overview is on NCPs that, together with collagen, contribute to structural and mechanical properties of bone. Current information on several mechanisms through which some NCPs influence bone’s resistance to fracture, including the role of nonenzymatic glycation, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14 Suppl 3:S35–42.

    PubMed  CAS  Google Scholar 

  2. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34:195–202.

    Article  PubMed  CAS  Google Scholar 

  3. Ott SM. When bone mass fails to predict bone failure. Calcif Tissue Int. 1993;53:S7–S13.

    Article  PubMed  Google Scholar 

  4. Sellmeyer DE. Atypical fractures as a potential complication of long-term bisphosphonate therapy. J Am Med Assoc. 2010;304:1480–3.

    Article  CAS  Google Scholar 

  5. Yoon RS, Hwang JS, Beebe K. Long-term bisphosphonate usage and subtrochanteric insuffciency fractures: a cause for concern? J Bone Joint Surg Br. 2011;93:1289–95.

    Article  PubMed  CAS  Google Scholar 

  6. Ahlman MA, Rissing MS, Gordon L. Evolution of bisphosphonate related atypical fracture retrospectively observed with DXA scanning. J Bone Miner Res. 2012;27(2):496–8. This is a report on a patient who after 4 years of bisphosphonate treatment experienced femur fracture despite improvements in BMD..

    Article  PubMed  CAS  Google Scholar 

  7. Melton 3rd LJ, Riggs BL, Keaveny TM, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.

    Article  PubMed  Google Scholar 

  8. Vashishth D. Rising crack growth resistance behavior in cortical bone: Implications for toughness measurements. J Biomech. 2004;37(10):943–6.

    Article  PubMed  Google Scholar 

  9. Saito M, Fujii K, Soshi S, Tanaka T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int. 2006;17(7):986–95.

    Article  PubMed  CAS  Google Scholar 

  10. Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.

    Article  PubMed  Google Scholar 

  11. Tang SY, Allen MR, Phipps R, et al. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporosis Int. 2009;20(6):887–94.

    Article  CAS  Google Scholar 

  12. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    Article  PubMed  Google Scholar 

  13. Bornstein P. Matricellular proteins: an overview. J Cell Commun Signal. 2009;3:163–5.

    Article  PubMed  Google Scholar 

  14. Centrella M, Horowitz MC, Wozney JM, et al. Transforming growth factor-beta gene family members and bone. Endocr Rev. 1994;15:27–39.

    PubMed  CAS  Google Scholar 

  15. Daughaday W, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10(1):68–91.

    Article  PubMed  CAS  Google Scholar 

  16. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34.

    PubMed  CAS  Google Scholar 

  17. Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–20. This is a comprehensive review on BMPs..

    Article  PubMed  CAS  Google Scholar 

  18. Pannicia R, Riccioni T, Zani BM, et al. calcitonin down-regulates immediate cell signals induced in human osteoclast-like cells by the bone sialoprotein-HA fragment through a post-integrin receptor mechanism. Endocrinology. 1995;136:1177–86.

    Article  Google Scholar 

  19. Takeuchi Y, Kodama Y, Matsumoto T. Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem. 1994;269:32634–8.

    PubMed  CAS  Google Scholar 

  20. Staal A, Van Wijnen AJ, Desai RK, et al. Antagonistic effects of transforming growth factor-beta on vitamin D3 enhancement of osteocalcin and osteopontin transcription: reduced interactions of vitamin D receptor/retinoid X receptor complexes with vitamin E response elements. Endocrinology. 1996;137(5):2001–11.

    Article  PubMed  CAS  Google Scholar 

  21. Keene DR, Sakai LY, Burgeson RE. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present onspecific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J Histochem Cytochem. 1991;39(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  22. Wu JJ, Weis MA, Kim LS, et al. Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue. J Biol Chem. 2009;284:5539–45.

    Article  PubMed  CAS  Google Scholar 

  23. McNally A, Henry Schwarcz HP, Botton GA et al.: A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One 7(1):e29258. doi:10.1371/journal.pone.0029258. In this paper a simplified model of bone mineral and collagen fibrils in fully dense cortical bone is presented.

  24. Chen PY, Toroian D, Price PA, McKittrick J. Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int. 2011;88:351–61. In this paper the structural features of bone mineral at different length scales are described..

    Article  PubMed  CAS  Google Scholar 

  25. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419. doi:10.1146/annurev-cellbio-100109-104020.

    Article  PubMed  CAS  Google Scholar 

  26. Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20:255–84. doi:10.1146/annurev.cellbio.20.010403.094555.

    Article  PubMed  CAS  Google Scholar 

  27. Durbeej M. Laminins. Cell Tissue Res. 2010;339(1):259–68. doi:10.1007/s00441-009-0838-2.

    Article  PubMed  CAS  Google Scholar 

  28. Lamoureux F, Baud’huin M, Duplomb L, et al. Proteoglycans: key partners in bone cell biology. Bioessays. 2007;29(8):758–71.

    Article  PubMed  CAS  Google Scholar 

  29. Siebers MC, ter Brugge PJ, Walboomers XF, et al. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  30. LeBaron RG, Höök A, Esko JD, et al. Binding of heparin sulfate to type V collagen. J Biol Chem. 1989;264:7950–6.

    PubMed  CAS  Google Scholar 

  31. Conover CA. In vitro studies of insulin-like growth factor I and bone. Growth Horm IGF Res. 2000;Supplement B:S107–10.

    Article  Google Scholar 

  32. Conover CA. Regulation and physiological role of insulin-like growth factor binding proteins. Endocr J. 1996;43(Suppl):S43–8.

    Article  PubMed  CAS  Google Scholar 

  33. Xia Y, Schneyer AL. The biology of activin: recent advances in structure, regulation and function. J Endocrinol. 2009;202:1–12.

    Article  PubMed  CAS  Google Scholar 

  34. Aleman-Muench GR, Soldevila G. When versatility matters: activins/inhibins as key regulators of immunity. Immunol Cell Biol. 2012;90:137–48. doi:10.1038/icb.2011.32.

    Article  PubMed  CAS  Google Scholar 

  35. Jenny A, Visser JA, de Jong FH, Laven JSE, et al. Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9. doi:rep.1.00529/rep.1.00529.

    Article  Google Scholar 

  36. Visser JA, Schipper I, Laven JSE, et al.: Anti-Müllerian hormone: an ovarian reserve marker in primary ovarian insufficiency. Nat Rev Endocrinol. 2012: doi:10.1038/nrendo.2011.224

  37. Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.

    PubMed  CAS  Google Scholar 

  38. Seyedin SM, Thomas TC, Thompson AY, et al. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci USA. 1985;82:2267–71.

    Article  PubMed  CAS  Google Scholar 

  39. Hering S, Isken E, Knabbe C, et al. TGF-β1 and TGF-β2 mRNA and protein expression in human bone samples. Exp Clin Endocrinol Diabetes. 2001;109:217–26.

    Article  PubMed  CAS  Google Scholar 

  40. ten Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem Sci. 2004;29:265–73.

    Article  PubMed  Google Scholar 

  41. Borton AJ, Frederick JP, Datto MB, et al. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res. 2001;16:1754–64.

    Article  PubMed  CAS  Google Scholar 

  42. Janssens K, ten Dijke P, Janssens S, et al. Transforming growth factor-β1 to the bone. Endocr Rev. 2005;26(6):743–74.

    Article  PubMed  CAS  Google Scholar 

  43. Balooch G, Balooch M, Nalla RK, et al. TGF-β regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA. 2005;102(52):18813–8.

    Article  PubMed  CAS  Google Scholar 

  44. Filvaroff E, Erlebacher A, Ye J, et al. Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development (Cambridge, UK). 1999;126:4267–79.

    CAS  Google Scholar 

  45. Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB. Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res. 2007;83:136–44.

    Article  Google Scholar 

  46. Mochida Y, Parisuthiman D, Pornprasertsuk-Damrongsri S, et al. Decorin modulates collagen matrix assembly and mineralization. Matrix Biol. 2009;28:44–52.

    Article  PubMed  CAS  Google Scholar 

  47. Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: a new perspective. Mater Sci Eng Rev. 2007;58:77–116.

    Article  Google Scholar 

  48. Qiu SR, Wierzbicki A, Orme CA, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci USA. 2004;101(7):1811–5.

    Article  PubMed  CAS  Google Scholar 

  49. Poundarik A, Karim L, Gundberg C, Vashishth, D.: The role of osteocalcin in bone fracture. Proceedings of the 55th Meeting of the Orthopaedic Research Society, Las Vegas, USA, February, 22–25, 2009 [abstract 724].

  50. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11(3):279–303.

    Article  PubMed  CAS  Google Scholar 

  51. McKee MD, Nanci A. Osteopontin deposition in remodeling bone: an osteoblast mediated event. J Bone Miner Res. 1996;11:873–4.

    Article  PubMed  CAS  Google Scholar 

  52. Rittling SR, Matsumoto HN, McKee MD, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res. 1998;13(7):1101–11.

    Article  PubMed  CAS  Google Scholar 

  53. Thurner PJ, Erickson B, Jungmann R, et al. High speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Eng Fract Mech. 2007;74:1928–41.

    Article  Google Scholar 

  54. Fantner GE, Hassenkam T, Kindt JH, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4:612–6.

    Article  PubMed  CAS  Google Scholar 

  55. Fantner GE, Adams J, Turner P, et al. Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett. 2007;7:2491–8.

    Article  PubMed  CAS  Google Scholar 

  56. Sroga GE, Karim L, Colón W, Vashishth D. Biochemical characterization of major bone–matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol Cell Proteomics. 2011;10(9):1–12. doi:10.1074/mcp.M110.006718. In this paper a novel strategy that permits comprehensive biochemical analysis of bone matrix proteins is presented. Application of the strategy facilitated detection of unexpected changes in the contents and composition of major bone matrix proteins, which occur during aging..

    Google Scholar 

  57. Thurner PJ, Chen CG, Ionova-Martin S, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 2010;46:1564–73. The most important result presented in this paper is a significant decrease in fracture toughness of mouse bone due to OPN deficiency..

    Article  PubMed  CAS  Google Scholar 

  58. Weinreb M, Shinar D, Rodan GA. Different pattern of alkaline phosphatase, osteopontin, and osteoealcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res. 1990;5:831–42.

    Article  PubMed  CAS  Google Scholar 

  59. Boivin G, Morel G, Lian JB, et al. Localization of endogenous osteocalcin in neonatal rat bone and its absence in articular cartilage: effect of warfarin treatment. Virchows Arch A Pathol Anat. 1990;417:505–12.

    Article  CAS  Google Scholar 

  60. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.

    Article  PubMed  CAS  Google Scholar 

  61. Kazanecki CC, Uzwiak DJ, Denhardt DT. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem. 2007;102:912–24.

    Article  PubMed  CAS  Google Scholar 

  62. Termine JD, Kleinman HK, Whitson SW, et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981;26(10, 1 Pt 1):99–105.

    Article  PubMed  CAS  Google Scholar 

  63. Delany AM, Amling M, Priemel M, et al. Osteopenia and decreased bone formation in osteonectin-defcient mice. J Clin Invest. 2000;105:915–23.

    Article  PubMed  CAS  Google Scholar 

  64. Young MF, Kerr JM, Ibaraki K, et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop. 1992;281:275–94.

    PubMed  Google Scholar 

  65. Lane TF, Sage EH. The biology of SPARC, a protein that modulated cell–matrix interactions. FASEB J. 1994;8:163–73.

    PubMed  CAS  Google Scholar 

  66. Shankavaram UT, DeWitt DL, Funk SE, et al. Regulation of human monocyte matrix metalloproteinases by SPARC. J Cell Physiol. 1997;173:327–34.

    Article  PubMed  CAS  Google Scholar 

  67. Tremble PM, Lane TF, Sage EH, Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol. 1993;121:1433–44.

    Article  PubMed  CAS  Google Scholar 

  68. Maillard C, Malaval L, Delmas PD. Immunological screening of SPARC/Osteonectin in nonmineralized tissues. Bone. 1992;13(3):257–64.

    Article  PubMed  CAS  Google Scholar 

  69. Butler W. The nature and significance of osteopontin. Connect Tiss Res. 1989;23:123–36.

    Article  CAS  Google Scholar 

  70. Gilmour DT, Lyon GJ, Carlton MB, et al. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J. 1998;17:1860–70.

    Article  PubMed  CAS  Google Scholar 

  71. Norose K, Clark JI, Syed NA, et al. SPARC deficiency leads to early onset cataractogenesis. Invest Ophthalmol Vis Sci. 1998;39:2674–80.

    PubMed  CAS  Google Scholar 

  72. Margolis RN, Canalis E, Partridge NC. Anabolic hormones in bone: basic research and therapeutic potential. J Clin Endocrinol Metab. 1996;81:872–7.

    Article  PubMed  CAS  Google Scholar 

  73. Baron RE. Anatomy and ultrastructure of bone. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. New York: Lippincott-Raven; 1996. p. 3–10.

    Google Scholar 

  74. Ninomiya JT, Tracy RP, Calore JD, et al. Heterogeneity of human bone. J Bone Miner Res. 1990;5:933–8.

    Article  PubMed  CAS  Google Scholar 

  75. Delany AM, McMahon DJ, Powell JS, et al. Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporos Int. 2008;19(7):969–78.

    Article  PubMed  CAS  Google Scholar 

  76. Muriel MP, Bonaventure J, Stanescu R, et al. Morphological and biochemical studies of a mouse mutant (fro/fro) with bone fragility. Bone. 1991;12:241–8.

    Article  PubMed  CAS  Google Scholar 

  77. Ramirez F, Rifkin DB. Extracellular microfibrils: contextual platforms for TGF-β and BMP signaling. Curr Opin Cell Biol. 2009;21:616–22.

    Article  PubMed  CAS  Google Scholar 

  78. Nistala H, Lee-Arteaga S, Smaldone S, et al. Fibrillin-1 and -2 differentially modulate endogenous TGF-β and BMP bioavailability during bone formation. J Cell Biol. 2010;190:1107–21.

    Article  PubMed  CAS  Google Scholar 

  79. Ramirez F. Extracellular matrix in the skeleton. In: Pourquie O, editor. The skeletal system. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009. p. 341–53.

    Google Scholar 

  80. Nistala H, Lee-Arteaga S, Smaldone S, et al. Extracellular microfibrils modulate osteoblast-supported osteoclastogenesis by restricting TGF-β stimulation of RANKL production. J Biol Chem. 2010;285:34126–33.

    Article  PubMed  CAS  Google Scholar 

  81. Arteaga-Solis E, Sui-Arteaga L, Kim M, et al. Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol. 2011;30(3):188–94. In this paper, it was demonstrated that fibrillin-1 and -2 differently influence bone strength. In particular, the fibrillin-2 knockout mice bones displayed a significant decrease in the biomechanical properties..

    Article  PubMed  CAS  Google Scholar 

  82. Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38(3):427–31.

    Article  PubMed  Google Scholar 

  83. Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007;40:612–8.

    Article  PubMed  Google Scholar 

  84. Arlot M, Burt-Pichat B, Roux J-P, et al. Microarchitecture influences microdamage accumulation in human vertebral trabecualr bone. J Bone Miner Res. 2008;23(10):1613–8.

    Article  PubMed  Google Scholar 

  85. Yeni YN, Hou FJ, Ciarelli T, et al. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann Biomed Eng. 2003;31(6):726–32.

    Article  PubMed  Google Scholar 

  86. Caler WE, Carter DR. Bone creep-fatigue damage accumulation. J Biomech. 1989;22:625–35.

    Article  PubMed  CAS  Google Scholar 

  87. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporosis Int. 2010;21:195–214. Currently, this is the most recent, comprehensive review on collagen crosslinks and their influence on bone quality..

    Article  CAS  Google Scholar 

  88. Shiraki M, Kuroda T, Tanaka S, et al. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab. 2008;26(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  89. Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.

    Article  PubMed  CAS  Google Scholar 

  90. Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5:62–6.

    Article  PubMed  Google Scholar 

  91. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.

    Article  PubMed  CAS  Google Scholar 

  92. Vashishth D. Hierarchy of bone microdamage at multiple length scales. Int J Fatigue. 2007;29:1024–33.

    Article  PubMed  CAS  Google Scholar 

  93. Sroga GE, Vashishth D. UPLC methodology for identification and quantitation of naturally fluorescent crosslinks in proteins: a study of bone collagen. J Chromatogr B. 2011;879:379–85. doi:10.1016/j.jchromb.2010.12.024.

    Article  CAS  Google Scholar 

  94. Viguet-Carrin S, Roux JP, Arlot ME, et al. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–9.

    Article  PubMed  CAS  Google Scholar 

  95. Weis MA, Hudson DM, Kim L, et al. Location of 3-hydroxyproline residues in collagen types I, II, II, and V/XI implies a role in fibril supramolecualr assembly. J Biol Chem. 2010;285(4):2580–90.

    Article  PubMed  CAS  Google Scholar 

  96. Hauschka PV, Lian JB, Cole DEC, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.

    PubMed  CAS  Google Scholar 

  97. Hankenson KD, Bornstein P. The secreted protein thrombospondin-2 is an auticrin inhibitor of marrow stromal cell proliferation. J Bone Mineral Res. 2002;17:415–25.

    Article  CAS  Google Scholar 

  98. George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev. 2008;108:4670–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Institutes of Health (NIH) grants AR4963506-11 and AG20618.

Disclosure

Conflicts of interest: G.E. Sroga: none; D. Vashishth: has received other grant support from the NIH; and has filed for a patent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Vashishth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sroga, G.E., Vashishth, D. Effects of Bone Matrix Proteins on Fracture and Fragility in Osteoporosis. Curr Osteoporos Rep 10, 141–150 (2012). https://doi.org/10.1007/s11914-012-0103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0103-6

Keywords

Navigation