Skip to main content

Advertisement

Log in

Medulloblastoma: an Old Diagnosis with New Promises

  • Neuro-oncology (Y Umemura, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Molecular subtyping in medulloblastoma (MB) has diagnostic and prognostic values which impact therapy. This paper provides guidance for the clinician caring for pediatric and adult patients with medulloblastoma in the modern era.

Recent Findings

Medulloblastoma comprises four molecularly distinct subgroups: wingless activated (WNT), sonic hedgehog activated (SHH), group 3, and group 4. Risk stratification before and after the discovery of molecular subgroups aims at minimizing toxicity by reducing radiation and chemotherapy doses in low-risk patients while maintaining favorable overall survival (OS). The mainstay of newly diagnosed medulloblastoma treatment is surgery, radiation therapy, and chemotherapy, except for children under 6 years of age, where high-dose chemotherapy with autologous stem cell rescue is used to avoid or delay radiotherapy, preventing neurocognitive sequelae. Management of recurrent/refractory medulloblastoma remains a challenge with immunotherapy and small-molecule inhibitors forming the backbone of novel strategies.

Summary

Recent innovations in medulloblastoma research allow us to better understand pathogenesis and molecular characteristics resulting in advanced risk stratification models, new therapeutic approaches, and overall improved survival and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kunscher LJ. Harvey Cushing and medulloblastoma. Arch Neurol. 2002;59:642–5.

    Article  Google Scholar 

  2. Paterson R, Farr RF. Cerebellar medulloblastoma: treatment by irradiation of the whole central nervous system. Acta Radiol. 1953;39:323–36.

    Article  CAS  PubMed  Google Scholar 

  3. Tait DM, Thornton-Jones H, Bloom HJ, Lemerle J, Morris-Jones P. Adjuvant chemotherapy for medulloblastoma: the first multicenter control trial of the International Society of Pediatric Oncology (SIOP I). Eur J Cancer. 1990;26:464–9.

    CAS  PubMed  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  5. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2015;16(Suppl 10):x1–x36.

    Article  PubMed  Google Scholar 

  6. Siegel, et al. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  7. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-Oncology. 2018;20(Suppl 4):1–86.

    Article  Google Scholar 

  8. Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci. 2015;72:3323–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khanna V, Achey RL, Ostrom QT, Block-Beach H, Kruchko C, Barnholtz-Sloan JS, et al. Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J Neurooncol. 2017;135:433–41 The study examined population-level trends in MB incidence and survival using data from 2001 to 2013. Overall incidence rate remained stable with slight male predominance, and the incidence was highest in the youngest patients. Non-significant trends in the data suggested disparities by race.

  10. Waszak SM, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 2018;19:785–98 This international, multicenter study found that the prevalence of genetic predisposition syndromes in MB patients was 6%, with SHH MB having the highest number of cases. It concluded that genetic counselling and testing should be a standard of care for WNT and SHH MB patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415:436–42.

    Article  CAS  PubMed  Google Scholar 

  12. Cavalli FGM, Remke M, Rampasek L, Peacock J, Shih DJH, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  14. Morrissy AS, Cavalli FMG, Remke M, Ramaswamy V, Shih DJH, Holgado BL, et al. Spatial heterogeneity in medulloblastoma. Nat Genet. 2017;49:780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D, et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular subgroup of medulloblastomas associated with a favorable prognosis. Cell Cycle. 2006;5:2666–70.

    Article  CAS  PubMed  Google Scholar 

  16. Remke M, Hielscher T, Northcott PA, Witt H, Ryzhova M, et al. Adult medulloblastoma comprises three major molecular variants. J Clin Oncol. 2011;29:2717–23 This study analyzed the transcriptome and DNA copy number alterations of 28 adult MB patients and that both tumor biology and prognostic impact differed from pediatric MB, suggesting the need for age specific classification system.

  17. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt, et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547:311–7 This study reported a comprehensive, genome-wide analysis of a cohort of 491 previously untreated MBs, which identified novel subgroup-specific driver genes, epigenetic subtypes, and candidate targets for therapy.

  18. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468:1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488:43–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iorgulescu JB, Van Ziffle J, Stevers M, Grenert JP, Bastian BC. Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathol. 2018;135:635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Choudhry Z, Rikani AA, Choudhry AM, Tariq S, Zakaria F, Asghar MW, et al. Sonic hedgehog signaling pathway: a complex network. Ann Neurosci. 2014;21:28–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.

    Article  CAS  PubMed  Google Scholar 

  23. Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond Smoothened. Front Genet. 2019;10:556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for Patched. Cancer Res. 2001;61:513–6.

    CAS  PubMed  Google Scholar 

  25. Lafay-Cousin L, Bouffet E, Strother D, Rudneva V, Hawkins C, Eberhart C, et al. Phase II study of nonmetastatic desmoplastic medulloblastoma in children younger than 4 years of age: a report of the Children’s Oncology Group (ACNS1221). J Clin Oncol. 2020;38:223–31.

    Article  PubMed  CAS  Google Scholar 

  26. Remke M, Ramaswamy V, Peacock J, Shih DJ, Koelsche C, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 2013;126:917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5:11.

    Article  PubMed  Google Scholar 

  29. Northcott PA, Lee C, Zichner T, Stutz AM, Erkek S, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511:428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32:886–96 This study identified molecular biomarkers from a set of 673 MB samples and designed risk stratification models based on clinical and cytogenetic information. This led to the identification of very low–risk and very high–risk patients within MB subgroups.

  31. Brasme JF, Chalumeau M, Doz F, Lacour B, Valteau-Couanet D, Gaillard S, et al. Interval between onset of symptoms and diagnosis of medulloblastoma in children: distribution and determinants in a population-based study. Eur J Pediatr. 2012;171:25–32.

    Article  PubMed  Google Scholar 

  32. Perrault S, Ramaswamy V, Achrol AS, Chao K, Liu TT, et al. MRI surrogates for molecular subgroups of medulloblastoma. Am J Neuroradiol. 2014;35:1263–9 This study showed that tumor location and enhancement pattern are predictive of molecular subgroups of pediatric MB and may serve as a surrogate for genomic testing.

  33. Oh ME, Driever PH, Khajuria RK, Rueckriegel SM, Koustenis E, Bruhn H, et al. DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors. J Neuro-Oncol. 2017;131:267–76.

    Article  Google Scholar 

  34. Chang CH, Housepian EM, Herbert C Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology. 1969;93:1351–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3:e3008.

    Article  CAS  Google Scholar 

  37. Garre ML, Cama A, Bagnasco F, Morana G, Giangaspero F, Brisigotti M, et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome–a new clinical perspective. Clin Cancer Res. 2009;15:2463–71.

    Article  PubMed  Google Scholar 

  38. Eberhart CG, Kepner JL, Goldthwaite PT, Kun LE, Duffner PK, Friedman HS, et al. Histopathologic grading of medulloblastomas: a pediatric oncology group study. Cancer. 2002;94:552–60.

    Article  PubMed  Google Scholar 

  39. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastoma. Acta Neuropathol. 2012;123:473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821–31 This article summarizes a new proposed risk stratification scheme based on several published and unpublished clinical, histopathological and biological studies.

  41. Northcott PA, Hielscher T, Dubuc A, Mack S, Shih D, Remke M, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 2011;122:231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: an integrated clinical and molecular analysis. Lancet Oncol. 2016;17:484–95 This study investigated the prognostic benefit of extent of resection and observed PFS benefit of gross total resection over subtotal resection but not between gross total and near total resection, and increased extent of resection only benefited metastatic group 4 patients.

  43. Schmahmann JD. Neuroanatomy of pediatric postoperative cerebellar cognitive affective syndrome and mutism. Neurology. 2019;93:693–4.

    Article  PubMed  Google Scholar 

  44. Robertson PL, Muraszko KM, Holmes EJ, Sposto R, Packer RJ, Gajjar A, et al. Incidence and severity of postoperative cerebellar mutism syndrome in children with medulloblastoma: a prospective study by the Children’s Oncology Group. J Neurosurg. 2006;105:444–51.

    PubMed  Google Scholar 

  45. Jabarkheel R, Amayiri N, Yecies D, Huang Y, Toescu S, et al. Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro Oncol. 2020;22:290–7.

  46. Catsman-Berrevoets CE, Aarsen FK. The spectrum of neurobehavioral deficits in the posterior fossa syndrome in children after cerebellar tumour surgery. Cortex. 2010;46:933–46.

    Article  PubMed  Google Scholar 

  47. Laughton SJ, Merchant TE, Sklar CA, Kun LE, Fouladi M, Broniscer A, et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J Clin Oncol. 2008;26:1112–8.

    Article  CAS  PubMed  Google Scholar 

  48. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24:4202–8.

    Article  CAS  PubMed  Google Scholar 

  49. Merchant TE, Kun LE, Krasin MJ, Wallace D, Chintagumpala MM, Woo SY, et al. Multi-institutional prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int J Radiat Oncol Biol Phys. 2008;70:782–7.

    Article  PubMed  Google Scholar 

  50. Chin AL, Moding EJ, Donaldson SS, Gibbs IC, Soltys SG, Hiniker SM, et al. Survival impact of postoperative radiotherapy timing in pediatric and adolescent medulloblastoma. Neuro-Oncology. 2018;20:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michalski J, Vezina G, Burger P, Gajjar A, Pollack I, et al. Preliminary results of COG ACNS0331: a phase III trial of involved field radiotherapy (IFRT) and low dose craniospinal irradiation (LD-CSI) with chemotherapy in average risk medulloblastoma: a report from the Children’s Oncology Group. Neuro-Oncology. 2016;18(Suppl 3):122.

    Article  Google Scholar 

  52. Lannering B, Rutkowski S, Doz F, Pizer B, Gustafsson G, Navajas A, et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J Clin Oncol. 2012;30:3187–93.

    Article  PubMed  Google Scholar 

  53. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S, et al. Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the Children’s Oncology Group Randomized ACNS0332 trial. J Clin Oncol. 2018;36:3388–95.

    Article  CAS  Google Scholar 

  54. http://www.survivorshipguidelines.org/pdf/2018/COG_LTFU_Guidelines_v5.pdf. Accessed 16 Apr 2020. This risk-based, exposure related clinical practice guideline provided recommendations for screening and management of late effects in MB survivors.

  55. Sklar CA, Constine LS. Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;31:1113–21.

    Article  CAS  PubMed  Google Scholar 

  56. Uday S, Murray RD, Picton S, Chumas P, Raju M, Chandwani M, et al. Endocrine sequelae beyond 10 years in survivors of medulloblastoma. Clin Endocrinol. 2015;83:663–70.

    Article  CAS  Google Scholar 

  57. Hanzlik E, Woodrome SE, Abdel-Baki M, Geller TJ, Elbabaa SK. A systematic review of neuropsychological outcomes following posterior fossa tumor surgery in children. Childs Nerv Syst. 2015;31:1869–75.

    Article  PubMed  Google Scholar 

  58. Kahalley LS, Peterson R, Ris MD, Janzen L, Okcu MF, et al. Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J Clin Oncol. 2020;38:454–61 This study demonstrated that proton radiotherapy is associated with more favorable intellectual outcomes when compared with photon radiotherapy.

  59. Kralik SF, Ho CY, Finke W, Buchsbaum JC, Haskins CP, Shih CS. Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. AJNR Am J Neuroradiol. 2015;36:1572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Davanzo J, Greiner RJ, Barbour M, Rizk E. Radiation necrosis following proton beam therapy in the pediatric population: a case series. Cureus. 2017;9:e1785.

    PubMed  PubMed Central  Google Scholar 

  61. Kessler AT, Bhatt AA. Brain tumor post-treatment imaging and treatment-related complications. Insights Imaging. 2018;9:1057–75.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Morgenstern PF, Shah K, Dunkel IJ, Reiner AS, Khakoo Y, Rosenblum MK, et al. Meningioma after radiotherapy for malignancy. J Clin Neurosci. 2016;30:93–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Packer RJ, Goldwein J, Nicholson HS, Vezina LG, Allen JC, Ris MD, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol. 1999;17:2127–36.

    Article  CAS  PubMed  Google Scholar 

  64. Hoff KV, Hinkes B, Gerber NU, Deinlein F, Mittler U, et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomized multicenter trial HIT’91. Eur J Cancer. 2009;45:1209–17.

    Article  PubMed  Google Scholar 

  65. Bailey CC, Gnekow A, Wellek S, Jones M, Round C, Brown J, et al. Prospective randomized trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Pediatric Oncology (SIOP) and the (German) Society of Pediatric Oncology (GPO): SIOP II. Med Pediatr Oncol. 1995;25:166–78.

    Article  CAS  PubMed  Google Scholar 

  66. Allen J, Donahue B, Mehta M, Miller DC, Rorke LB, Jakacki R, et al. A phase II study of preradiotherapy chemotherapy followed by hyperfractionated radiotherapy for newly diagnosed high-risk medulloblastoma/ primitive neuroectodermal tumor: a report from the Children’s Oncology Group (CCG 9931). Int J Radiat Oncol Biol Phys. 2009;74:1006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Taylor RE, Bailey CC, Robinson KJ, Weston CL, Walker DA, Ellison D, et al. Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur J Cancer. 2005;41:727–34.

    Article  CAS  PubMed  Google Scholar 

  68. Sexauer CL, Khan A, Burger PC, Krischer JP, van Eys J, Vats T, et al. Cisplatin in recurrent pediatric brain tumors. A POG phase II study. A Pediatric Oncology Group Study. Cancer. 1985;56:1497–501.

    Article  CAS  PubMed  Google Scholar 

  69. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7:813–20.

    Article  PubMed  Google Scholar 

  70. Valteau-Couanet D, Fillipini B, Benhamou E, Grill J, Kalifa C, Couanet D, et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: high toxicity and lack of efficacy. Bone Marrow Transplant. 2005;36:939–45.

    Article  CAS  PubMed  Google Scholar 

  71. Nazemi KJ, Shen V, Finlay JL, Boyett J, Kocak M, Lafond D, et al. High incidence of veno-occlusive disease with myeloablative chemotherapy following craniospinal irradiation in children with newly diagnosed high-risk CNS embryonal tumors: a report from the Children’s Oncology Group (CCG-99702). Pediatr Blood Cancer. 2016;63:1563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Argyriou AA, Kyritsis AP, Makatsoris T, Kalofonos HP. Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res. 2014;6:135–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Packer RJ, Zhou T, Holmes E, Vezina G, Gajjar A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro-Oncology. 2013;15:97–103.

    Article  CAS  PubMed  Google Scholar 

  74. Dhall G, Grodman H, Jo L, Sands S, Gardner S, et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr Blood Cancer. 2008;50:1169–75.

    Article  PubMed  Google Scholar 

  75. Dhall G, Ji L, Haley K, Grimm JP, Gilles FH, et al. Outcome of infants and young children with newly diagnosed medulloblastoma treated on Head Start III protocol. J Clin Oncol. 2011;29(15_suppl):2011.

    Article  Google Scholar 

  76. Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352:978–86.

    Article  CAS  PubMed  Google Scholar 

  77. Grundy RG, Wilne SH, Robinson KJ, Ironside JW, Cox T, Chong WK, et al. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer. 2010;46:120–33.

    Article  CAS  PubMed  Google Scholar 

  78. von Bueren AO, von Hoff K, Pietsch T, Gerber NU, Warmuth-Metz M, Deinlein F, et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro-Oncology. 2011;13:669–79.

    Article  Google Scholar 

  79. Merchant TE, Pollack IF, Loeffler JS, et al. Brain tumors across the age spectrum: biology, therapy, and late effects. Semin Radiat Oncol. 2010;20:58–66.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Friedrich C, von Bueren AO, von Hoff K, Kwiecien R, Pietsch T, Warmuth-Metz M, et al. Treatment of adult nonmetastatic medulloblastoma patients according to the pediatric HIT 2000 protocol: a prospective observational multicentre study. Eur J Cancer. 2013;49:893–903.

    Article  PubMed  Google Scholar 

  81. Taylor RE, Bailey CC, Robinson K, Weston CL, Ellison D, Ironside J, et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J Clin Oncol. 2003;21:1581–91.

    Article  CAS  PubMed  Google Scholar 

  82. Beier D, Proescholdt M, Reinert C, Pietsch T, Jones DTW, Pfister SM, et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-Oncology. 2018;20:400–10.

    Article  CAS  PubMed  Google Scholar 

  83. Pizer BL, Clifford SC. The potential impact of tumor biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg. 2009;23:364–75.

    Article  PubMed  Google Scholar 

  84. Pizer B, Donachie PH, Robinson K, Taylor RE, Michalski A, et al. Treatment of recurrent central nervous system primitive neuroectodermal tumours in children and adolescents: results of a Children’s Cancer and Leukemia Group study. Eur J Cancer. 2011;47:1389–97.

    Article  PubMed  Google Scholar 

  85. Gruber ML, Buster WP. Temozolomide in combination with irinotecan for treatment of recurrent malignant glioma. Am J Clin Oncol. 2004;27:33–8.

    Article  CAS  PubMed  Google Scholar 

  86. Grill J, Geoerger B, Gesner L, Perek D, Leblond P, Canete A, et al. Phase II study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study. Neuro-Oncology. 2013;15:1236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levy A, Krailo M, Chi S, Williams-Hughes C, Bancroft M, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma/CNS PNET of childhood: report of a COG randomized phase II screening trial. Neuro Oncol. 2017;19(Suppl 6):vi186.

    Article  PubMed Central  Google Scholar 

  88. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29:508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, et al. Genomic analysis of Smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27:327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell. 2012;21:155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hanaford AR, Archer TC, Price A, Kahlert UD, Maciaczyk J, Nikkhah G, et al. DiSCoVERing innovative therapies for rare tumors: combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clin Cancer Res. 2016;22:3903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Perrinjaquet C, Desbaillets N, Hottinger AF. Neurotoxicity associated with cancer immunotherapy: immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. Curr Opin Neurol. 2019;32:500–10.

    Article  CAS  PubMed  Google Scholar 

  94. Kramer K, Pandit-Taskar N, Zanzonico P, Wolden SL, Humm JL, DeSelm C, et al. Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. J Neuro-Oncol. 2015;123:245–9.

    Article  CAS  Google Scholar 

  95. Kramer K, Pandit-Taskar N, Donzelli M, Wolden SL, Zanzonico P, et al. Safety and efficacy of intraventricular 131I-labeled monoclonal antibody 8H9 targeting the surface glycoprotein B7-H3. Pediatr Blood Cancer. 2019;66(S4):V557 SIOP19–1597.

    Google Scholar 

  96. Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol. 2018;9:866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23:1898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahmed N, Ratnayake M, Savolodo B, Perlaky L, Dotti G, et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 2007;67:5957–64.

    Article  CAS  PubMed  Google Scholar 

  99. Fares J, Fares MY, Fares Y. Natural killer cells in the brain tumor microenvironment: defining a new era in neuro-oncology. Surg Neurol Int. 2019;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Joseph Olechnowicz, MA for his help with editing the manuscript; Marc Rosenblum, MD for providing histopathology images; and Sofia Haque, MD for her help providing radiologic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Khakoo.

Ethics declarations

Conflict of Interest

None of the authors has any potential conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szalontay, L., Khakoo, Y. Medulloblastoma: an Old Diagnosis with New Promises. Curr Oncol Rep 22, 90 (2020). https://doi.org/10.1007/s11912-020-00953-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00953-4

Keywords

Navigation