Skip to main content

Advertisement

Log in

The Role of Vascular Endothelial Growth Factor in the Pathogenesis, Diagnosis and Treatment of Malignant Pleural Effusion

  • Hot Topic
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Malignant pleural effusions (MPEs) are a significant source of cancer-related morbidity. Over 150,000 patients in the United States suffer from breathlessness and diminished quality of life due to MPE each year. Current management strategies are of mostly palliative value and focus on symptom control; they do not address the pathobiology of the effusion, nor do they improve survival. Further elucidation of the pathophysiological mechanisms, coupled with the development of novel treatments such as intrapleural chemotherapeutics targeting this process, has the potential to greatly improve the efficacy of our current management options. Vascular endothelial growth factor-A (VEGF-A) has been implicated as a critical cytokine in the formation of malignant pleural effusions. Elevated levels of VEGF produced by tumor cells, mesothelial cells, and infiltrating immune cells result in increased vascular permeability, cancer cell transmigration, and angiogenesis. Therefore antiangiogenic therapies such as Bevacizumab, a monoclonal antibody targeting VEGF-A, may have a potential role in the management of malignant pleural effusions. Herein we review the pathogenesis and potential treatment strategies of malignant pleural effusions, with a focus on angiogenesis and antiangiogenic therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Haas AR, Sterman DH, Musani AI. Malignant pleural effusions: management options with consideration of coding, billing, and a decision approach. Chest. 2007;132(3):1036–41. doi:10.1378/chest.06-1757.

    Article  PubMed  Google Scholar 

  2. Heffner JE, Klein JS. Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin Proc. 2008;83(2):235–50. doi:10.4065/83.2.235.

    PubMed  Google Scholar 

  3. Anderson CB, Philpott GW, Ferguson TB. The treatment of malignant pleural effusions. Cancer. 1974;33(4):916–22.

    Article  PubMed  CAS  Google Scholar 

  4. Memon A, Zawadzki ZA. Malignant effusions: diagnostic evaluation and therapeutic strategy. Curr Probl Cancer. 1981;5(8):1–30.

    Article  PubMed  CAS  Google Scholar 

  5. Morgensztern D, Waqar S, Subramanian J, Trinkaus K, Govindan R. Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non-small-cell lung cancer. J Thorac Oncol. 2012;7(10):1485–9. doi:10.1097/JTO.0b013e318267223a.

    Article  PubMed  Google Scholar 

  6. Antunes G, Neville E, Duffy J, Ali N. BTS guidelines for the management of malignant pleural effusions. Thorax. 2003;58 Suppl 2:ii29–38.

    PubMed  Google Scholar 

  7. Ide AG, Baker NH, Warren SL. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol. 1939;42:891–9.

    Google Scholar 

  8. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. doi:10.1056/NEJM197111182852108.

    Article  PubMed  CAS  Google Scholar 

  9. Hamed EA, El-Noweihi AM, Mohamed AZ, Mahmoud A. Vasoactive mediators (VEGF and TNF-alpha) in patients with malignant and tuberculous pleural effusions. Respirology. 2004;9(1):81–6. doi:10.1111/j.1440-1843.2003.00529.x.

    Article  PubMed  Google Scholar 

  10. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65(3):671–80.

    PubMed  CAS  Google Scholar 

  11. Numnum TM, Rocconi RP, Whitworth J, Barnes MN. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol Oncol. 2006;102(3):425–8. doi:10.1016/j.ygyno.2006.05.018.

    Article  PubMed  CAS  Google Scholar 

  12. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol. 2001;280(6):C1375–86.

    PubMed  CAS  Google Scholar 

  13. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. doi:10.1038/nm0603-669.

    Article  PubMed  CAS  Google Scholar 

  16. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27. doi:10.1200/JCO.2005.06.081.

    Article  PubMed  CAS  Google Scholar 

  17. Ku DD, Zaleski JK, Liu S, Brock TA. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol. 1993;265(2 Pt 2):H586–92.

    PubMed  CAS  Google Scholar 

  18. Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, et al. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS. 1997;79:233–69.

    PubMed  CAS  Google Scholar 

  19. Mohammed KA, Nasreen N, Hardwick J, Logie CS, Patterson CE, Antony VB. Bacterial induction of pleural mesothelial monolayer barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2001;281(1):L119–25.

    PubMed  CAS  Google Scholar 

  20. Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 2010;87(2):262–71. doi:10.1093/cvr/cvq105.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108(Pt 6):2369–79.

    PubMed  CAS  Google Scholar 

  22. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997;57(4):765–72.

    PubMed  CAS  Google Scholar 

  23. Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009;296(5):F947–56. doi:10.1152/ajprenal.90601.2008.

    Article  PubMed  CAS  Google Scholar 

  24. Michel CC, Neal CR. Openings through endothelial cells associated with increased microvascular permeability. Microcirculation. 1999;6(1):45–54.

    PubMed  CAS  Google Scholar 

  25. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol. 1997;504(Pt 3):747–61.

    Article  PubMed  CAS  Google Scholar 

  26. Fujimoto K, Hosotani R, Wada M, Lee JU, Koshiba T, Miyamoto Y, et al. Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. Eur J Cancer. 1998;34(9):1439–47.

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda N, Adachi M, Taki T, Huang C, Hashida H, Takabayashi A, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer. 1999;79(9–10):1553–63. doi:10.1038/sj.bjc.6690248.

    Article  PubMed  CAS  Google Scholar 

  28. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 1996;77(5):858–63.

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi Y, Cleary KR, Mai M, Kitadai Y, Bucana CD, Ellis LM. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin Cancer Res. 1996;2(10):1679–84.

    PubMed  CAS  Google Scholar 

  30. Lee JC, Chow NH, Wang ST, Huang SM. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer. 2000;36(6):748–53.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55(18):3964–8.

    PubMed  CAS  Google Scholar 

  32. Fontanini G, Lucchi M, Vignati S, et al. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst. 1997;89:881–6.

    Article  PubMed  CAS  Google Scholar 

  33. Berns EM, Klijn JG, Look MP, Grebenchtchikov N, Vossen R, Peters H, et al. Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clin Cancer Res. 2003;9(4):1253–8.

    PubMed  CAS  Google Scholar 

  34. Manders P, Beex LV, Tjan-Heijnen VC, Geurts-Moespot J, Van Tienoven TH, Foekens JA, et al. The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer. 2002;87(7):772–8. doi:10.1038/sj.bjc.6600555.

    Article  PubMed  CAS  Google Scholar 

  35. George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001;7(7):1932–6.

    PubMed  CAS  Google Scholar 

  36. Gorski DH, Leal AD, Goydos JS. Differential expression of vascular endothelial growth factor-A isoforms at different stages of melanoma progression. J Am Coll Surg. 2003;197(3):408–18. doi:10.1016/S1072-7515(03)00388-0.

    Article  PubMed  Google Scholar 

  37. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611. doi:10.1210/er.2003-0027.

    Article  PubMed  CAS  Google Scholar 

  38. Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol. 2006;290(2):L209–21. doi:10.1152/ajplung.00185.2005.

    Article  PubMed  CAS  Google Scholar 

  39. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.

    Article  PubMed  CAS  Google Scholar 

  40. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi:10.1038/nrc1187.

    Article  PubMed  CAS  Google Scholar 

  41. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood. 2002;100(10):3767–75. doi:10.1182/blood-2002-01-0109.

    Article  PubMed  CAS  Google Scholar 

  42. Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S, et al. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J. 2005;19(8):960–2. doi:10.1096/fj.04-1973fje.

    PubMed  CAS  Google Scholar 

  43. • Prager GW, Lackner EM, Krauth MT, Unseld M, Poettler M, Laffer S, et al. Targeting of VEGF-dependent transendothelial migration of cancer cells by bevacizumab. Mol Oncol. 2010;4(2):150–60. doi:10.1016/j.molonc.2010.01.002. VEGF induces endothelial permeability and tumor cell transmigration in vitro, effects which are mitigated by rapamycin or bevacizumab.

    Article  PubMed  CAS  Google Scholar 

  44. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene. 2006;25(31):4300–9. doi:10.1038/sj.onc.1209464.

    Article  PubMed  CAS  Google Scholar 

  45. Pritchard-Jones RO, Dunn DB, Qiu Y, Varey AH, Orlando A, Rigby H, et al. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer. 2007;97(2):223–30. doi:10.1038/sj.bjc.6603839.

    Article  PubMed  CAS  Google Scholar 

  46. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65.

    PubMed  CAS  Google Scholar 

  47. Soker S, Fidder H, Neufeld G, Klagsbrun M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem. 1996;271(10):5761–7.

    Article  PubMed  CAS  Google Scholar 

  48. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92(6):735–45.

    Article  PubMed  CAS  Google Scholar 

  49. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    Article  PubMed  CAS  Google Scholar 

  50. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72(6):835–46.

    Article  PubMed  CAS  Google Scholar 

  51. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001;276(29):26969–79. doi:10.1074/jbc.M103213200.

    Article  PubMed  CAS  Google Scholar 

  52. Grove CS, Lee YC. Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr Opin Pulm Med. 2002;8(4):294–301.

    Article  PubMed  Google Scholar 

  53. Cheng D, Lee YC, Rogers JT, Perkett EA, Moyers JP, Rodriguez RM, et al. Vascular endothelial growth factor level correlates with transforming growth factor-beta isoform levels in pleural effusions. Chest. 2000;118(6):1747–53.

    Article  PubMed  CAS  Google Scholar 

  54. Croghan GA, Nichols F, Cassivi S, et al. VEGF A, C, and D levels in malignant pleural effusions. J Clin Oncol. 2008;26(15S):abst. 22126.

    Google Scholar 

  55. Fiorelli A, Vicidomini G, Di Domenico M, Napolitano F, Messina G, Morgillo F, et al. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12(3):420–4. doi:10.1510/icvts.2010.250357.

    Article  PubMed  Google Scholar 

  56. Lieser E, Bradshaw M, Croghan G, Mullon J, Shen KR, Nichols F. Proangiogenesis factors and cell phenotyping in the etiology and diagnosis of malignant pleural effusions. J Thorac Oncol. 2011;6(6):S750–1.

    Google Scholar 

  57. Sack U, Hoffmann M, Zhao XJ, Chan KS, Hui DS, Gosse H, et al. Vascular endothelial growth factor in pleural effusions of different origin. Eur Respir J. 2005;25(4):600–4. doi:10.1183/09031936.05.00037004.

    Article  PubMed  CAS  Google Scholar 

  58. Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax. 1999;54(8):707–10.

    Article  PubMed  CAS  Google Scholar 

  59. Yanagawa H, Takeuchi E, Suzuki Y, Ohmoto Y, Bando H, Sone S. Vascular endothelial growth factor in malignant pleural effusion associated with lung cancer. Cancer Immunol Immunother. 1999;48(7):396–400.

    Article  PubMed  CAS  Google Scholar 

  60. Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, Ellis LM. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol. 1999;6(4):373–8.

    Article  PubMed  CAS  Google Scholar 

  61. Zebrowski BK, Yano S, Liu W, Shaheen RM, Hicklin DJ, Putnam Jr JB, et al. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res. 1999;5(11):3364–8.

    PubMed  CAS  Google Scholar 

  62. Ishii H, Yazawa T, Sato H, Suzuki T, Ikeda M, Hayashi Y, et al. Enhancement of pleural dissemination and lymph node metastasis of intrathoracic lung cancer cells by vascular endothelial growth factors (VEGFs). Lung Cancer. 2004;45(3):325–37. doi:10.1016/j.lungcan.2004.02.021.

    Article  PubMed  Google Scholar 

  63. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Am J Pathol. 2000;157(6):1893–903. doi:10.1016/S0002-9440(10)64828-6.

    Article  PubMed  CAS  Google Scholar 

  64. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. doi:10.1073/pnas.0530291100.

    Article  PubMed  CAS  Google Scholar 

  65. Cui R, Takahashi F, Ohashi R, Yoshioka M, Gu T, Tajima K, et al. Osteopontin is involved in the formation of malignant pleural effusion in lung cancer. Lung Cancer. 2009;63(3):368–74. doi:10.1016/j.lungcan.2008.06.020.

    Article  PubMed  Google Scholar 

  66. Stathopoulos GT, Psallidas I, Moustaki A, Moschos C, Kollintza A, Karabela S, et al. A central role for tumor-derived monocyte chemoattractant protein-1 in malignant pleural effusion. J Natl Cancer Inst. 2008;100(20):1464–76. doi:10.1093/jnci/djn325.

    Article  PubMed  CAS  Google Scholar 

  67. Stathopoulos GT, Sherrill TP, Karabela SP, Goleniewska K, Kalomenidis I, Roussos C, et al. Host-derived interleukin-5 promotes adenocarcinoma-induced malignant pleural effusion. Am J Respir Crit Care Med. 2010;182(10):1273–81. doi:10.1164/rccm.201001-0001OC.

    Article  PubMed  CAS  Google Scholar 

  68. Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN, et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res. 2007;67(20):9825–34. doi:10.1158/0008-5472.CAN-07-1064.

    Article  PubMed  CAS  Google Scholar 

  69. •• Stathopoulos GT, Kalomenidis I. Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med. 2012;186(6):487–92. doi:10.1164/rccm.201203-0465PP. Presents a model of malignant pleural effusion pathogenesis integrating the interactions between tumor and host.

    Article  PubMed  Google Scholar 

  70. Korpanty G, Smyth E, Sullivan LA, Brekken RA, Carney DN. Antiangiogenic therapy in lung cancer: focus on vascular endothelial growth factor pathway. Exp Biol Med (Maywood). 2010;235(1):3–9. doi:10.1258/ebm.2009.009191.

    Article  CAS  Google Scholar 

  71. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438(7070):967–74. doi:10.1038/nature04483.

    Article  PubMed  CAS  Google Scholar 

  72. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–45. doi:10.1007/s10456-004-8272-2.

    Article  PubMed  CAS  Google Scholar 

  73. Mitchell EP. Targeted therapy for metastatic colorectal cancer: role of aflibercept. Clin Colorectal Cancer. 2012. doi:10.1016/j.clcc.2012.08.001.

    PubMed  Google Scholar 

  74. Gordon MS, Margolin K, Talpaz M, Sledge Jr GW, Holmgren E, Benjamin R, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19(3):843–50.

    PubMed  CAS  Google Scholar 

  75. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res. 2004;10(11):3577–85. doi:10.1158/1078-0432.CCR-03-0627.

    Article  PubMed  CAS  Google Scholar 

  76. Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819–25. doi:10.1634/theoncologist.2009-0317.

    Article  PubMed  CAS  Google Scholar 

  77. Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85(1):178–87.

    Article  PubMed  CAS  Google Scholar 

  78. Strizzi L, Catalano A, Vianale G, Orecchia S, Casalini A, Tassi G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol. 2001;193(4):468–75. doi:10.1002/path.824.

    Article  PubMed  CAS  Google Scholar 

  79. Yeo KT, Wang HH, Nagy JA, Sioussat TM, Ledbetter SR, Hoogewerf AJ, et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Res. 1993;53(12):2912–8.

    PubMed  CAS  Google Scholar 

  80. Caine GJ, Lip GY, Blann AD. Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Ann Med. 2004;36(4):273–7.

    Article  PubMed  CAS  Google Scholar 

  81. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 2000;60(22):6253–8.

    PubMed  CAS  Google Scholar 

  82. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94(6):715–25.

    Article  PubMed  CAS  Google Scholar 

  83. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha–> hypoxia response element–> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248–52.

    PubMed  CAS  Google Scholar 

  84. Kishimoto J, Ehama R, Ge Y, Kobayashi T, Nishiyama T, Detmar M, et al. In vivo detection of human vascular endothelial growth factor promoter activity in transgenic mouse skin. Am J Pathol. 2000;157(1):103–10. doi:10.1016/S0002-9440(10)64522-1.

    Article  PubMed  CAS  Google Scholar 

  85. Gary Lee YC, Melkerneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor beta induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med. 2002;165(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  86. Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  87. Heffner JE. Diagnosis and management of malignant pleural effusions. Respirology. 2008;13(1):5–20. doi:10.1111/j.1440-1843.2007.01154.x.

    PubMed  Google Scholar 

  88. Ryu JS, Ryu ST, Kim YS, Cho JH, Lee HL. What is the clinical significance of transudative malignant pleural effusion? Korean J Intern Med. 2003;18(4):230–3.

    PubMed  Google Scholar 

  89. Porcel JM, Alvarez M, Salud A, Vives M. Should a cytologic study be ordered in transudative pleural effusions? Chest. 1999;116(6):1836–7.

    Article  PubMed  CAS  Google Scholar 

  90. Light RW, Macgregor MI, Luchsinger PC, Ball Jr WC. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77(4):507–13.

    Article  PubMed  CAS  Google Scholar 

  91. Prakash UBS, Reiman HM. Comparison of needle-biopsy with cytologic analysis for the evaluation of pleural effusion - analysis of 414 cases. Mayo Clin Proc. 1985;60(3):158–64.

    Article  PubMed  CAS  Google Scholar 

  92. Sahn SA. Malignant pleural effusions. Clin Chest Med. 1985;6(1):113–25.

    PubMed  CAS  Google Scholar 

  93. Escudero Bueno C, Garcia Clemente M, Cuesta Castro B, Molinos Martin L, Rodriguez Ramos S, Gonzalez Panizo A, et al. Cytologic and bacteriologic analysis of fluid and pleural biopsy specimens with Cope's needle. Study of 414 patients. Arch Intern Med. 1990;150(6):1190–4.

    Article  PubMed  CAS  Google Scholar 

  94. Abouzgheib W, Bartter T, Dagher H, Pratter M, Klump W. A prospective study of the volume of pleural fluid required for accurate diagnosis of malignant pleural effusion. Chest. 2009;135(4):999–1001. doi:10.1378/chest.08-2002.

    Article  PubMed  Google Scholar 

  95. Sallach SM, Sallach JA, Vasquez E, Schultz L, Kvale P. Volume of pleural fluid required for diagnosis of pleural malignancy. Chest. 2002;122(6):1913–7.

    Article  PubMed  Google Scholar 

  96. Domej W, Tilz GP, Foldes-Papp Z, Demel U, Rabold T, Holzer H. Cystatin C of pleural effusion as a novel diagnostic aid in pleural diseases of different aetiologies. Clin Sci (Lond). 2002;102(3):373–80.

    Article  Google Scholar 

  97. Matveychuk A, Rashid G, Fridman Z, Guber A, Shitrit D. Pleural ELFA D-dimer assay: a surrogate marker for malignant pleural effusion. Thromb Res. 2012;129(5):648–51. doi:10.1016/j.thromres.2011.07.036.

    Article  PubMed  CAS  Google Scholar 

  98. Pernemalm M, De Petris L, Eriksson H, Branden E, Koyi H, Kanter L, et al. Use of narrow-range peptide IEF to improve detection of lung adenocarcinoma markers in plasma and pleural effusion. Proteomics. 2009;9(13):3414–24. doi:10.1002/pmic.200800814.

    Article  PubMed  CAS  Google Scholar 

  99. Shijubo N, Honda Y, Fujishima T, Takahashi H, Kodama T, Kuroki Y, et al. Lung surfactant protein-A and carcinoembryonic antigen in pleural effusions due to lung adenocarcinoma and malignant mesothelioma. Eur Respir J. 1995;8(3):403–6.

    Article  PubMed  CAS  Google Scholar 

  100. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004;31(1):114–21. doi:10.1165/rcmb.2003-0238OC.

    Article  PubMed  CAS  Google Scholar 

  101. Hsieh WY, Chen MW, Ho HT, You TM, Lu YT. Identification of differentially expressed proteins in human malignant pleural effusions. Eur Respir J. 2006;28(6):1178–85. doi:10.1183/09031936.06.00135405.

    Article  PubMed  CAS  Google Scholar 

  102. Rodriguez-Pineiro AM, Blanco-Prieto S, Sanchez-Otero N, Rodriguez-Berrocal FJ, de la Cadena MP. On the identification of biomarkers for non-small cell lung cancer in serum and pleural effusion. J Proteomics. 2010;73(8):1511–22. doi:10.1016/j.jprot.2010.03.005.

    Article  PubMed  CAS  Google Scholar 

  103. Botana-Rial M, Casado-Rey P, Leiro-Fernandez V, Andrade-Olivie M, Represas-Represas C, Fernandez-Villar A. Validity of procalcitonin and C-reactive protein measurement when differentiating between benign and malignant pleural effusion. Clin Lab. 2011;57(5–6):373–8.

    PubMed  CAS  Google Scholar 

  104. Cheng D, Rodriguez RM, Perkett EA, Rogers J, Bienvenu G, Lappalainen U, et al. Vascular endothelial growth factor in pleural fluid. Chest. 1999;116(3):760–5.

    Article  PubMed  CAS  Google Scholar 

  105. Yu CJ, Wang CL, Wang CI, Chen CD, Dan YM, Wu CC, et al. Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology. J Proteome Res. 2011;10(10):4671–82. doi:10.1021/pr2004743.

    Article  PubMed  CAS  Google Scholar 

  106. Shen YC, Liu MQ, Wan C, Chen L, Wang T, Wen FQ. Diagnostic accuracy of vascular endothelial growth factor for malignant pleural effusion: a meta-analysis. Exp Ther Med. 2012;3(6):1072–6. doi:10.3892/etm.2012.514.

    PubMed  Google Scholar 

  107. Bielsa S, Martin-Juan J, Porcel JM, Rodriguez-Panadero F. Diagnostic and prognostic implications of pleural adhesions in malignant effusions. J Thorac Oncol. 2008;3(11):1251–6. doi:10.1097/JTO.0b013e318189f53d.

    Article  PubMed  Google Scholar 

  108. Bernard A, de Dompsure RB, Hagry O, Favre JP. Early and late mortality after pleurodesis for malignant pleural effusion. Ann Thorac Surg. 2002;74(1):213–7.

    Article  PubMed  Google Scholar 

  109. Burrows CM, Mathews WC, Colt HG. Predicting survival in patients with recurrent symptomatic malignant pleural effusions: an assessment of the prognostic values of physiologic, morphologic, and quality of life measures of extent of disease. Chest. 2000;117(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  110. Dresler CM, Olak J, Herndon 2nd JE, Richards WG, Scalzetti E, Fleishman SB, et al. Phase III intergroup study of talc poudrage vs talc slurry sclerosis for malignant pleural effusion. Chest. 2005;127(3):909–15. doi:10.1378/chest.127.3.909.

    Article  PubMed  Google Scholar 

  111. Schulze M, Boehle AS, Kurdow R, Dohrmann P, Henne-Bruns D. Effective treatment of malignant pleural effusion by minimal invasive thoracic surgery: thoracoscopic talc pleurodesis and pleuroperitoneal shunts in 101 patients. Ann Thorac Surg. 2001;71(6):1809–12.

    Article  PubMed  CAS  Google Scholar 

  112. Rodriguez-Panadero F, Lopez-Mejias J. Survival time of patients with pleural metastatic carcinoma predicted by glucose and pH studies. Chest. 1989;95(2):320–4.

    Article  PubMed  CAS  Google Scholar 

  113. Sahn SA, Good Jr JT. Pleural fluid pH in malignant effusions. Diagnostic, prognostic, and therapeutic implications. Ann Intern Med. 1988;108(3):345–9.

    Article  PubMed  CAS  Google Scholar 

  114. Sanchez-Armengol A, Rodriguez-Panadero F. Survival and talc pleurodesis in metastatic pleural carcinoma, revisited. Report of 125 cases. Chest. 1993;104(5):1482–5.

    Article  PubMed  CAS  Google Scholar 

  115. Love D, White D, Kiroff G. Thoracoscopic talc pleurodesis for malignant pleural effusion. ANZ J Surg. 2003;73(1–2):19–22.

    PubMed  Google Scholar 

  116. Viallat JR, Rey F, Astoul P, Boutin C. Thoracoscopic talc poudrage pleurodesis for malignant effusions. A review of 360 cases. Chest. 1996;110(6):1387–93.

    Article  PubMed  CAS  Google Scholar 

  117. Hirayama N, Tabata C, Tabata R, Maeda R, Yasumitsu A, Yamada S, et al. Pleural effusion VEGF levels as a prognostic factor of malignant pleural mesothelioma. Respir Med. 2011;105(1):137–42. doi:10.1016/j.rmed.2010.10.010.

    Article  PubMed  Google Scholar 

  118. Davies HE, Steer H, Fysh E, et al. Diagnosis and management of malignant pleural effusions. Minerva Pneumonol. 2010;49:237–52.

    Google Scholar 

  119. Shaw P, Agarwal R. Pleurodesis for malignant pleural effusions. Cochrane Database Syst Rev. 2004;1:CD002916. doi:10.1002/14651858.CD002916.pub2.

    PubMed  Google Scholar 

  120. Burgers JA, Kunst PW, Koolen MG, Willems LN, Burgers JS, van den Heuvel M. Pleural drainage and pleurodesis: implementation of guidelines in four hospitals. Eur Respir J. 2008;32(5):1321–7. doi:10.1183/09031936.00165607.

    Article  PubMed  CAS  Google Scholar 

  121. Demmy TL, Gu L, Burkhalter JE, Toloza EM, D'Amico TA, Sutherland S, et al. Optimal management of malignant pleural effusions (results of CALGB 30102). J Natl Compr Canc Netw. 2012;10(8):975–82.

    PubMed  Google Scholar 

  122. Olden AM, Holloway R. Treatment of malignant pleural effusion: PleuRx catheter or talc pleurodesis? A cost-effectiveness analysis. J Palliat Med. 2010;13(1):59–65. doi:10.1089/jpm.2009.0220.

    Article  PubMed  Google Scholar 

  123. Suzuki K, Servais EL, Rizk NP, Solomon SB, Sima CS, Park BJ, et al. Palliation and pleurodesis in malignant pleural effusion: the role for tunneled pleural catheters. J Thorac Oncol. 2011;6(4):762–7. doi:10.1097/JTO.0b013e31820d614f.

    Article  PubMed  Google Scholar 

  124. Van Meter ME, McKee KY, Kohlwes RJ. Efficacy and safety of tunneled pleural catheters in adults with malignant pleural effusions: a systematic review. J Gen Intern Med. 2011;26(1):70–6. doi:10.1007/s11606-010-1472-0.

    Article  PubMed  Google Scholar 

  125. Tremblay A, Michaud G. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion. Chest. 2006;129(2):362–8. doi:10.1378/chest.129.2.362.

    Article  PubMed  Google Scholar 

  126. Bogliolo GV, Lerza R, Bottino GB, Mencoboni MP, Pannacciulli IM, Vannozzi M, et al. Regional pharmacokinetic selectivity of intrapleural cisplatin. Eur J Cancer. 1991;27(7):839–42.

    Article  PubMed  CAS  Google Scholar 

  127. Figlin R, Mendoza E, Piantadosi S, Rusch V. Intrapleural chemotherapy without pleurodesis for malignant pleural effusions. LCSG Trial 861. Chest. 1994;106(6 Suppl):363S–6S.

    PubMed  CAS  Google Scholar 

  128. Jones DR, Taylor MD, Petroni GR, Shu J, Burks SG, Daniel TM, et al. Phase I trial of intrapleural docetaxel administered through an implantable catheter in subjects with a malignant pleural effusion. J Thorac Oncol. 2010;5(1):75–81. doi:10.1097/JTO.0b013e3181c07ddc.

    Article  PubMed  Google Scholar 

  129. Lerza R, Vannozzi MO, Tolino G, Viale M, Bottino GB, Bogliolo G, et al. Carboplatin and cisplatin pharmacokinetics after intrapleural combination treatment in patients with malignant pleural effusion. Ann Oncol. 1997;8(4):385–91.

    Article  PubMed  CAS  Google Scholar 

  130. Masuno T, Kishimoto S, Ogura T, Honma T, Niitani H, Fukuoka M, et al. A comparative trial of LC9018 plus doxorubicin and doxorubicin alone for the treatment of malignant pleural effusion secondary to lung cancer. Cancer. 1991;68(7):1495–500.

    Article  PubMed  CAS  Google Scholar 

  131. Muraoka M, Oka T, Akamine S, Tagawa T, Morinaga M, Inoue M, et al. Modified intrapleural cisplatin treatment for lung cancer with positive pleural lavage cytology or malignant effusion. J Surg Oncol. 2006;93(4):323–9. doi:10.1002/jso.20470.

    Article  PubMed  CAS  Google Scholar 

  132. Perng RP, Wu MF, Lin SY, Chen YM, Lin JY, Whang-Peng J. A phase I feasibility and pharmacokinetic study of intrapleural paclitaxel in patients with malignant pleural effusions. Anticancer Drugs. 1997;8(6):565–73.

    Article  PubMed  CAS  Google Scholar 

  133. Shoji T, Tanaka F, Yanagihara K, Inui K, Wada H. Phase II study of repeated intrapleural chemotherapy using implantable access system for management of malignant pleural effusion. Chest. 2002;121(3):821–4.

    Article  PubMed  CAS  Google Scholar 

  134. Tohda Y, Iwanaga T, Takada M, Yana T, Kawahara M, Negoro S, et al. Intrapleural administration of cisplatin and etoposide to treat malignant pleural effusions in patients with non-small cell lung cancer. Chemotherapy. 1999;45(3):197–204.

    Article  PubMed  CAS  Google Scholar 

  135. Wang X, Zhou J, Wang Y, Zhu Z, Lu Y, Wei Y, et al. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions. Eur J Cancer. 2010;46(8):1474–80. doi:10.1016/j.ejca.2010.02.002.

    Article  PubMed  CAS  Google Scholar 

  136. Yoshida K, Sugiura T, Takifuji N, Kawahara M, Matsui K, Kudoh S, et al. Randomized phase II trial of three intrapleural therapy regimens for the management of malignant pleural effusion in previously untreated non-small cell lung cancer: JCOG 9515. Lung Cancer. 2007;58(3):362–8. doi:10.1016/j.lungcan.2007.07.009.

    Article  PubMed  Google Scholar 

  137. Sterman DH, Recio A, Haas AR, Vachani A, Katz SI, Gillespie CT, et al. A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther. 2010;18(4):852–60. doi:10.1038/mt.2009.309.

    Article  PubMed  CAS  Google Scholar 

  138. Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A, et al. A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res. 2007;13(15 Pt 1):4456–66. doi:10.1158/1078-0432.CCR-07-0403.

    Article  PubMed  CAS  Google Scholar 

  139. Ren S, Terman DS, Bohach G, Silvers A, Hansen C, Colt H, et al. Intrapleural staphylococcal superantigen induces resolution of malignant pleural effusions and a survival benefit in non-small cell lung cancer. Chest. 2004;126(5):1529–39. doi:10.1378/chest.126.5.1529.

    Article  PubMed  Google Scholar 

  140. Ribeiro SC, Vargas FS, Antonangelo L, Marchi E, Genofre EH, Acencio MM, et al. Monoclonal anti-vascular endothelial growth factor antibody reduces fluid volume in an experimental model of inflammatory pleural effusion. Respirology. 2009;14(8):1188–93. doi:10.1111/j.1440-1843.2009.01628.x.

    Article  PubMed  Google Scholar 

  141. Hu L, Hofmann J, Zaloudek C, Ferrara N, Hamilton T, Jaffe RB. Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am J Pathol. 2002;161(5):1917–24. doi:10.1016/S0002-9440(10)64467-7.

    Article  PubMed  CAS  Google Scholar 

  142. Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 1998;153(4):1249–56. doi:10.1016/S0002-9440(10)65669-6.

    Article  PubMed  CAS  Google Scholar 

  143. Gossmann A, Helbich TH, Mesiano S, Shames DM, Wendland MF, Roberts TP, et al. Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol. 2000;183(4):956–63. doi:10.1067/mob.2000.107092.

    Article  PubMed  CAS  Google Scholar 

  144. Luo JC, Toyoda M, Shibuya M. Differential inhibition of fluid accumulation and tumor growth in two mouse ascites tumors by an antivascular endothelial growth factor/permeability factor neutralizing antibody. Cancer Res. 1998;58(12):2594–600.

    PubMed  CAS  Google Scholar 

  145. Shaheen RM, Ahmad SA, Liu W, Reinmuth N, Jung YD, Tseng WW, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer. 2001;85(4):584–9. doi:10.1054/bjoc.2001.1936.

    Article  PubMed  CAS  Google Scholar 

  146. Yano S, Herbst RS, Shinohara H, Knighton B, Bucana CD, Killion JJ, et al. Treatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation. Clin Cancer Res. 2000;6(3):957–65.

    PubMed  CAS  Google Scholar 

  147. Watanabe M, Boyer JL, Crystal RG. AAVrh.10-mediated genetic delivery of bevacizumab to the pleura to provide local anti-VEGF to suppress growth of metastatic lung tumors. Gene Ther. 2010;17(8):1042–51.

    Article  PubMed  CAS  Google Scholar 

  148. Shibuya M, Luo JC, Toyoda M, Yamaguchi S. Involvement of VEGF and its receptors in ascites tumor formation. Cancer Chemother Pharmacol. 1999;43(Suppl):S72–7.

    Article  PubMed  CAS  Google Scholar 

  149. Teixeira LR, Vargas FS, Acencio MM, Ribeiro SC, Sales RK, Antonangelo L, et al. Blockage of vascular endothelial growth factor (VEGF) reduces experimental pleurodesis. Lung Cancer. 2011. doi:10.1016/j.lungcan.2011.04.015.

    PubMed  Google Scholar 

  150. Guo YB, Kalomenidis I, Hawthorne M, Parman KS, Lane KB, Light RW. Pleurodesis is inhibited by anti-vascular endothelial growth factor antibody. Chest. 2005;128(3):1790–7. doi:10.1378/chest.128.3.1790.

    Article  PubMed  CAS  Google Scholar 

  151. Pichelmayer O, Zielinski C, Raderer M. Response of a nonmalignant pleural effusion to bevacizumab. N Engl J Med. 2005;353(7):740–1. doi:10.1056/NEJM200508183530721.

    Article  PubMed  CAS  Google Scholar 

  152. Bae SH, Hwang JY, Kim WJ, Yoon HH, Kim JM, Nam YH, et al. A case of cardiac amyloidosis with diuretic-refractory pleural effusions treated with bevacizumab. Korean Circ J. 2010;40(12):671–6. doi:10.4070/kcj.2010.40.12.671.

    Article  PubMed  Google Scholar 

  153. Pichelmayer O, Gruenberger B, Zielinski C, Raderer M. Bevacizumab is active in malignant effusion. Ann Oncol. 2006;17(12):1853. doi:10.1093/annonc/mdl143.

    Article  PubMed  CAS  Google Scholar 

  154. Kitamura K, Kubota K, Ando M, Takahashi S, Nishijima N, Sugano T, et al. Bevacizumab plus chemotherapy for advanced non-squamous non-small-cell lung cancer with malignant pleural effusion. Cancer Chemother Pharmacol. 2013;71(2):457–61. doi:10.1007/s00280-012-2026-4.

    Article  PubMed  CAS  Google Scholar 

  155. Kesterson JP, Mhawech-Fauceglia P, Lele S. The use of bevacizumab in refractory ovarian granulosa-cell carcinoma with symptomatic relief of ascites: a case report. Gynecol Oncol. 2008;111(3):527–9. doi:10.1016/j.ygyno.2008.07.015.

    Article  PubMed  CAS  Google Scholar 

  156. Hamilton CA, Maxwell GL, Chernofsky MR, Bernstein SA, Farley JH, Rose GS. Intraperitoneal bevacizumab for the palliation of malignant ascites in refractory ovarian cancer. Gynecol Oncol. 2008;111(3):530–2. doi:10.1016/j.ygyno.2008.04.028.

    Article  PubMed  CAS  Google Scholar 

  157. El-Shami K, Elsaid A, El-Kerm Y. Open-label safety and efficacy pilot trial of intraperitoneal bevacizumab as palliative treatment in refractory malignant ascites. J Clin Oncol. 2007;25(18 Suppl):9043.

    Google Scholar 

Download references

Conflict of Interest

Michael Bradshaw declares no conflict of interest.

Aaron Mansfield declares no conflict of interest.

Tobias Peikert declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Peikert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, M., Mansfield, A. & Peikert, T. The Role of Vascular Endothelial Growth Factor in the Pathogenesis, Diagnosis and Treatment of Malignant Pleural Effusion. Curr Oncol Rep 15, 207–216 (2013). https://doi.org/10.1007/s11912-013-0315-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-013-0315-7

Keywords

Navigation