Skip to main content

Advertisement

Log in

Neuregulin Signaling and Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Neuregulin-1 (NRG-1), a ligand of receptor tyrosine kinases of the ErbB family, plays a critical role in cardiovascular development and maintenance of adult heart function. Results from cellular, animal, and clinical experiments have shown NRG-1 to be a promising drug candidate for restoring cardiac function after cardiac injury. Various mechanisms have been suggested to be involved in this process, such as improving sarcomeric structure or cell–cell adhesion, promoting proliferation and survival of cardiac myocytes, balancing Ca2+ homeostasis, modulating inotropic effects, promoting angiogenesis, and preventing atherosclerosis. However, the contribution of these effects to the restoration of cardiac function remains to be estimated, and it may depend on the specific events that led to heart failure. Meanwhile, distinct and crossed signaling pathways downstream of NRG-1 may play a role in these underlying mechanisms, resulting in a complicated network of signaling mediating the function of NRG-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance •• Of major importance

  1. Britsch S: The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 2007, 190:1–65.

    Article  PubMed  Google Scholar 

  2. Meyer D, Yamaai T, Garratt A, et al.: Isoform-specific expression and function of neuregulin. Development 1997, 124:3575–3586.

    CAS  PubMed  Google Scholar 

  3. Falls DL: Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003, 284:14–30.

    Article  CAS  PubMed  Google Scholar 

  4. Bublil EM, Yarden Y: The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 2007, 19:124–134.

    Article  CAS  PubMed  Google Scholar 

  5. • Pentassuglia L, Sawyer DB: The role of Neuregulin-1beta/ErbB signaling in the heart. Exp Cell Res 2009, 315:627–637. This article reviews recent advances in understanding the role of NRG-1 in the cardiac development and maintenance of heart function.

  6. Meyer D, Birchmeier C: Multiple essential functions of neuregulin in development. Nature 1995, 378:386–390.

    Article  CAS  PubMed  Google Scholar 

  7. Gassmann M, Casagranda F, Orioli D, et al.: Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 1995, 378:390–394.

    Article  CAS  PubMed  Google Scholar 

  8. Lee KF, Simon H, Chen H, et al.: Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995, 378:394–398.

    Article  CAS  PubMed  Google Scholar 

  9. Crone SA, Zhao YY, Fan L, et al.: ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002, 8:459–465.

    Article  CAS  PubMed  Google Scholar 

  10. García-Rivello H, Taranda J, Said M, et al.: Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am J Physiol Heart Circ Physiol 2005, 289:H1153–H1160.

    Article  PubMed  Google Scholar 

  11. Zhao YY, Sawyer DR, Baliga RR, et al.: Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 1998, 273:10261–10269.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Gu X, Li Z, et al.: Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol 2006, 48:1438–1447.

    Article  CAS  PubMed  Google Scholar 

  13. •• Bersell K, Arab S, Haring B, Kühn B: Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009, 138: 257–270. This study first reported on NRG-1-induced proliferation of differentiated cardiomyocytes and further emphasized the therapeutic effects of NRG-1 on ischemic heart failure.

  14. Rohrbach S, Niemann B, Silber RE, Holtz J: Neuregulin receptors erbB2 and erbB4 in failing human myocardium—depressed expression and attenuated activation. Basic Res Cardiol 2005, 100:240–249.

    Article  CAS  PubMed  Google Scholar 

  15. Lemmens K, Doggen K, De Keulenaer GW: Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 2007, 116:954–960.

    Article  CAS  PubMed  Google Scholar 

  16. •• Gao R, Zhang J, Cheng L, et al.: A phase II, randomized, double-blind, multi-center, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 (rhNRG-1) in patients with chronic heart failure (CHF). J Am Coll Cardiol (In press). This article provides the first report demonstrating the therapeutic role of NRG-1 for the treatment of chronic heart failure in humans. Recombinant NRG-1 improved the cardiac function of patients with congestive heart failure by increasing left ventricular ejection fraction percentage, and showed a capability of anti-remodeling by decreasing end-systolic volume and end-diastolic volume compared with pretreatment.

  17. Baliga RR, Pimental DR, Zhao YY, et al.: NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol 1999, 277:H2026–H2037.

    CAS  PubMed  Google Scholar 

  18. Peng X, Kraus MS, Wei H, et al.: Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 2006, 116:217–227.

    Article  CAS  PubMed  Google Scholar 

  19. Peng X, Wu X, Druso JE, et al.: Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci U S A 2008, 105:6638–6643.

    Article  CAS  PubMed  Google Scholar 

  20. Kovacic-Milivojević B, Roediger F, Almeida EA, et al.: Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell 2001, 12:2290–2307.

    PubMed  Google Scholar 

  21. Mansour H, de Tombe PP, Samarel AM, Russell B: Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res 2004, 94:642–649.

    Article  CAS  PubMed  Google Scholar 

  22. Kuramochi Y, Guo X, Sawyer DB: Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol 2006, 41:228–235.

    Article  CAS  PubMed  Google Scholar 

  23. Willey CD, Balasubramanian S, Rodríguez Rosas MC, et al.: Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. J Mol Cell Cardiol 2003, 35:671–683.

    Article  CAS  PubMed  Google Scholar 

  24. Scruggs SB, Hinken AC, Thawornkaiwong A, et al.: Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. J Biol Chem 2009, 284:5097–5106.

    Article  CAS  PubMed  Google Scholar 

  25. Dumka D, Talent J, Akopova I, et al.: E22K mutation of RLC that causes familial hypertrophic cardiomyopathy in heterozygous mouse myocardium: effect on cross-bridge kinetics. Am J Physiol Heart Circ Physiol 2006, 291:H2098–H2106.

    Article  CAS  PubMed  Google Scholar 

  26. Aoki H, Sadoshima J, Izumo S: Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 2000, 6:183–188.

    Article  CAS  PubMed  Google Scholar 

  27. • Seguchi O, Takashima S, Yamazaki S, et al.: A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 2007, 117:2812–2824. This study provided the first report on the identification of cMLCK from human myocardia and further demonstrated that knockdown of cMLCK expression in cardiomyocytes results in immature sarcomere structures.

  28. • Chan JY, Takeda M, Briggs LE, et al.: Identification of cardiac-specific myosin light chain kinase. Circ Res 2008, 102:571–580. This study reports that Nkx2-5 regulated cMLCK expression and further demonstrates that cMLCK modulate MLC2 phosphorylation, sarcomere organization, and cardiomyocytes contraction.

  29. Wang Z, Xu G, Wu Y, et al.: Neuregulin-1 promotes cardiomyocyte differentiation of genetically engineered embryonic stem cell clones. BMB Rep 2008, 41:699–704.

    CAS  PubMed  Google Scholar 

  30. Wang Z, Xu G, Wu Y, et al.: Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput 2009, 47:41–48.

    Article  PubMed  Google Scholar 

  31. Pasumarthi KB, Field LJ: Cardiomyocyte cell cycle regulation. Circ Res 2002, 90:1044–1054.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider JW, Chang AY, Rocco TP: Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart. Semin Oncol 2001, 28:18–26.

    Article  CAS  PubMed  Google Scholar 

  33. Kuramochi Y, Lim CC, Guo X, et al.: Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1beta. Am J Physiol Cell Physiol 2004, 286:C222–C229.

    Article  CAS  PubMed  Google Scholar 

  34. Okoshi K, Nakayama M, Yan X, et al.: Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 2004, 110:713–717.

    Article  CAS  PubMed  Google Scholar 

  35. Fukazawa R, Miller TA, Kuramochi Y, et al.: Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 2003, 35:1473–1479.

    Article  CAS  PubMed  Google Scholar 

  36. Miao W, Luo Z, Kitsis RN, Walsh K: Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 2000, 32:2397–2402.

    Article  CAS  PubMed  Google Scholar 

  37. Fujio Y, Nguyen T, Wencker D, et al.: Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 2000, 101:660–667.

    CAS  PubMed  Google Scholar 

  38. Das S, Cordis GA, Maulik N, Das DK: Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 2005, 288:H328–H235.

    Article  CAS  PubMed  Google Scholar 

  39. Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, et al.: Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 2008, 294:H724–H735.

    Article  CAS  PubMed  Google Scholar 

  40. Kubalova Z, Terentyev D, Viatchenko-Karpinski S, et al.: Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A 2005, 102:14104–14109.

    Article  CAS  PubMed  Google Scholar 

  41. Go LO, Moschella MC, Watras J, et al.: Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995, 95:888–894.

    Article  CAS  PubMed  Google Scholar 

  42. Pathak A, del Monte F, Zhao W, et al.: Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 2005, 96:756–766.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang MT, Lokuta AJ, Farrell EF, et al.: Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circ Res 2002, 91:1015–1022.

    Article  CAS  PubMed  Google Scholar 

  44. MacDougall LK, Jones LR, Cohen P: Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 1991, 196:725–734.

    Article  CAS  PubMed  Google Scholar 

  45. Verboomen H, Wuytack F, De Smedt H, et al.: Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 1992, 286:591–595.

    CAS  PubMed  Google Scholar 

  46. Gupta RC, Mishra S, Rastogi S, et al.: Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am J Physiol Heart Circ Physiol 2003, 285:H2373–H2381.

    CAS  PubMed  Google Scholar 

  47. El-Armouche A, Rau T, Zolk O, et al.: Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J 2003, 17:437–439.

    CAS  PubMed  Google Scholar 

  48. Lemmens K, Fransen P, Sys SU, et al.: Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 2004, 109:324–326.

    Article  CAS  PubMed  Google Scholar 

  49. Amin DN, Hida K, Bielenberg DR, Klagsbrun M: Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 2006, 66:2173–2180.

    Article  CAS  PubMed  Google Scholar 

  50. Iivanainen E, Paatero I, Heikkinen SM, et al.: Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 2007, 313:2896–2909.

    Article  CAS  PubMed  Google Scholar 

  51. Panutsopulos D, Arvanitis DL, Tsatsanis C, et al.: Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res 2005, 42:463–474.

    Article  CAS  PubMed  Google Scholar 

  52. Sigala F, Georgopoulos S, Papalambros E, et al.: Heregulin, cysteine rich-61 and matrix metalloproteinase 9 expression in human carotid atherosclerotic plaques: relationship with clinical data. Eur J Vasc Endovasc Surg 2006, 32:238–245.

    Article  CAS  PubMed  Google Scholar 

  53. Xu G, Watanabe T, Iso Y, et al.: Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis. Circ Res 2009, 105:500–510.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingdong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Zhou, M. Neuregulin Signaling and Heart Failure. Curr Heart Fail Rep 7, 42–47 (2010). https://doi.org/10.1007/s11897-010-0003-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-010-0003-y

Keywords

Navigation