Skip to main content

Advertisement

Log in

mTOR Inhibitors and its Role in the Treatment of Head and Neck Squamous Cell Carcinoma

  • Head and Neck Cancer (T Day, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Head and neck squamous cell carcinomas (HNSCC) represent 6% of all cancers diagnosed each year in the United States, affecting approximately 43,000 new patients and resulting in approximately 12,000 deaths. Currently, three main rapalogs exist for the treatment of cancer: CCI-779 (temsirolimus), RAD001 (everolimus), and AP235373 (deforolimus). Clinicians managing HNSCC need to be aware of the three rapalogs. Extensive evidence has shown rapamycin-analogs to be effective agents in the treatment of a number of solid tumors. While extensive preclinical data suggests that HNSCC would be an appropriate tumor type to benefit from inhibition of the mTOR pathway, limited clinical data is yet available to support this. Numerous phase II trials evaluating mTOR inhibitors for use in HNSCC are currently recruiting patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;caac.20073.

  2. Jemal A, Thun MJ, Ries LAG, et al. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control 23 2008;1000.

  3. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  PubMed  CAS  Google Scholar 

  4. Amornphimoltham P, Sriuranpong V, Patel V, et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma. Clin Cancer Res. 2004;10:4029–37.

    Article  PubMed  CAS  Google Scholar 

  5. Molinolo AA, Hewitt SM, Amornphimoltham P, et al. Dissecting the Akt/Mammalian target of Rapamycin signaling network: emerging results from head and neck cancer tissue array initiative. Clin Canc Res. 2007;17:4964–73.

    Article  Google Scholar 

  6. Nathan CO, Amirghahari N, Abreo F, et al. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/Mammalian target of Rapamycin pathway. Clin Cancer Res. 2004;10:5820–7.

    Article  PubMed  CAS  Google Scholar 

  7. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–37.

    Article  PubMed  CAS  Google Scholar 

  8. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63.

    Article  PubMed  CAS  Google Scholar 

  9. Zoncu R, Efeyan A, Sabatini D. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev. 2011;12:21–35.

    Article  CAS  Google Scholar 

  10. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  PubMed  CAS  Google Scholar 

  11. Gangloff Y-G, Mueller M, Dann SG, et al. Disruption of the mouse mTOR gene leads to early Postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24:9508–16.

    Article  PubMed  CAS  Google Scholar 

  12. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;123:471–84.

    Article  Google Scholar 

  13. Raught B, Gingras A-C, Gygi SP, et al. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 1999;19:434–44.

    Article  Google Scholar 

  14. Kouvaraki MA, Liakou C, Paraschi A, et al. Activation of mTOR signaling in medullary and aggressive papillary thyroid carcinomas. Surgery. 2011;150(6):1258–65.

    Article  PubMed  Google Scholar 

  15. Tang H, Hornstein E, Stolovich M, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by Rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001;21:8671–83.

    Article  PubMed  CAS  Google Scholar 

  16. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged Rapamycin treatment Inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.

    Article  PubMed  CAS  Google Scholar 

  17. Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8.

    Article  PubMed  CAS  Google Scholar 

  18. Liu L, Li F, Cardelli J, Martin K, Blenis J, Huang S. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene. 2006;25:7029–40.

    Article  PubMed  CAS  Google Scholar 

  19. Li B, Desai S, MacCorkle-Chosenek R, Fan L, Spencer D. A novel conditional AKT ‘survival switch’ reversibly protects cells from apoptosis. Gene Ther. 2002;9:233–44.

    Article  PubMed  CAS  Google Scholar 

  20. Castedo M. Sequential invovlemtn of CDK1, mtor and p53 in apoptosis induced by the HIV-1 envelope. EMBO J. 2002;21:4070–80.

    Article  PubMed  CAS  Google Scholar 

  21. Bjornsti M-A, Houghton PJ. The tor pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  PubMed  CAS  Google Scholar 

  22. Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a Novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004;22:2336–47.

    Article  PubMed  CAS  Google Scholar 

  23. Hidalgo M, Rowinsky EK. The rapamycin-sensitive singal transduction as a target pathway as a target for cancer therapy. Oncogene. 2000;19:6680–6.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmerman JJ, Patat A, Parks V, Moirand R, Matschke K. Pharmacokinetics of Sirolimus (Rapamycin) in subjects with severe hepatic impairment. J Clin Pharmacol. 2008;48:285–92.

    Article  PubMed  CAS  Google Scholar 

  25. Brattstrom C, Wilczek H, Tyden G, Bottiger Y, Sawe J, Groth CG. Hyperlipidemia in renal transplant recipients treated with Sirolimus(Rapamycin). Transplantation. 1998;65:1272–4.

    Article  PubMed  CAS  Google Scholar 

  26. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of Rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22:909–18.

    Article  PubMed  CAS  Google Scholar 

  27. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, Interferon Alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  PubMed  CAS  Google Scholar 

  28. Nathan C-AO, Amirghahari N, Sibley D, et al. In vivo and in vitro effect of CCI-779 a rapamycin analogue on HNSCC. AACR Meeting Abstracts. 2004;2004:850-c-1.

  29. Tanaka C, O’Reilly T, Kovarik JM, et al. Identifying optimal biologic doses of Everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26:1596–602.

    PubMed  CAS  Google Scholar 

  30. Tabernero J, Rojo F, Calvo E, et al. Dose- and schedule-dependent inhibition of the mammalian target of Rapamycin pathway with Everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.

    Article  PubMed  CAS  Google Scholar 

  31. Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer. 2009;115:2438–46.

    Article  PubMed  CAS  Google Scholar 

  32. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56.

    Article  PubMed  CAS  Google Scholar 

  33. Khariwala SS, Kjaergaard J, Lorenz R, Van Lente F, Shu S, Strome M. Everolimus (RAD) inhibits in vivo growth of murine squamous cell carcinoma (SCC VII). Laryngoscope. 2006;116(5):814–20.

    Article  PubMed  Google Scholar 

  34. Patel V, Marsh CA, Dorsam RT, et al. Decreased Lyphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Research. 2011;71(22):7103–12.

    Article  PubMed  CAS  Google Scholar 

  35. Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of Rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 Days every 2 Weeks to patients with advanced malignancies. J Clin Oncol. 2008;26:361–7.

    Article  PubMed  CAS  Google Scholar 

  36. Hartford CM, Desai AA, Janisch L, et al. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of Deforolimus in patients with advanced malignancies. Clin Cancer Res. 2009;15:1428–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

S. Nguyen: none, D. Walker: none, M.B. Gillespie: none, J.S. Gutkind,T Day: received honoraria from Bristol-Myers and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun A. Nguyen M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, S.A., Walker, D., Gillespie, M.B. et al. mTOR Inhibitors and its Role in the Treatment of Head and Neck Squamous Cell Carcinoma. Curr. Treat. Options in Oncol. 13, 71–81 (2012). https://doi.org/10.1007/s11864-011-0180-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-011-0180-2

Keywords

Navigation