Skip to main content
Log in

The Abscopal Effect in the Era of Cancer Immunotherapy: a Spontaneous Synergism Boosting Anti-tumor Immunity?

  • Leading Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Radiotherapy is one of the main treatment strategies used in cancer. Aside from the local control of the disease, which is mediated by a direct cytotoxic effect on tumor cells, radiotherapy has also been shown to exert immune-mediated local and systemic effects. Radiotherapy can elicit anti-tumor responses in distant sites from the radiation field; this phenomenon is known as the abscopal effect and has been described in patients previously treated with immune checkpoint blockade (ICB). Considering that the efficacy of immunotherapy has been demonstrated only in a subset of patients—who often benefit with lasting responses—efforts are ongoing to potentiate its activity with the development of new combination strategies. Radiotherapy might represent a potential candidate for a synergistic combination with immunotherapy, by improving the immunogenicity of tumors and by enhancing local and systemic immune effects. This review aims to summarize the current pre-clinical and clinical data on the immune effects of radiotherapy and their potential implications for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mole RH. Whole body irradiation—radiobiology or medicine? Br J Radiol. 1953;26(305):234–41. https://doi.org/10.1259/0007-1285-26-305-234.

    Article  CAS  PubMed  Google Scholar 

  2. Shi F, Wang X, Teng F, Kong L, Yu J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy. Cancer Biol Ther. 2017;18(3):137–41. https://doi.org/10.1080/15384047.2016.1276133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–10. https://doi.org/10.1016/j.ctrv.2015.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. https://doi.org/10.1056/NEJMoa1112824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu ZI, McArthur HL, Ho AY. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr Breast Cancer Rep. 2017;9(1):45–51. https://doi.org/10.1007/s12609-017-0234-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zitvogel L, Kroemer G. Subversion of anticancer immunosurveillance by radiotherapy. Nat Immunol. 2015;16(10):1005–7. https://doi.org/10.1038/ni.3236.

    Article  CAS  PubMed  Google Scholar 

  7. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012;2:191. https://doi.org/10.3389/fonc.2012.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4(9):529–36.

    Article  CAS  PubMed  Google Scholar 

  9. Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 2015;16(10):1060–8. https://doi.org/10.1038/ni.3270.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rotstein S, Blomgren H, Petrini B, Wasserman J, Baral E. Long term effects on the immune system following local radiation therapy for breast cancer. I. Cellular composition of the peripheral blood lymphocyte population. Int J Radiat Oncol Biol Phys. 1985;11(5):921–5.

    Article  CAS  PubMed  Google Scholar 

  11. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65. https://doi.org/10.1093/jnci/djs629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. https://doi.org/10.1038/nrc1782.

    Article  PubMed  Google Scholar 

  13. Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77(4):817–22. https://doi.org/10.1158/0008-5472.CAN-16-2379.

    Article  CAS  PubMed  Google Scholar 

  14. Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccine. 2016;4(3):28. https://doi.org/10.3390/vaccines4030028.

    Article  Google Scholar 

  15. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11–7. https://doi.org/10.1016/j.semradonc.2014.07.005.

    Article  PubMed  Google Scholar 

  16. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10(7):718–26. https://doi.org/10.1016/S1470-2045(09)70082-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237–43. https://doi.org/10.1038/sj.cdd.4402148.

    Article  CAS  PubMed  Google Scholar 

  18. Stjernswärd J, Vanky F, Jondal M, Wigzell H, Sealy R. Lymphopenia and change in distribution of human B and T lymphocytes in peripheral blood induced by irradiation for mammary carcinoma. Lancet. 1972;299(7765):1352–6.

    Article  Google Scholar 

  19. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res. 1999;59(13):3128–33.

    CAS  PubMed  Google Scholar 

  20. Nguy S, Tomkoetter L, Alothman S, Alqunaibit D, Miller G, Du KL. Radiation therapy induces an immunosuppressive immune infiltrate in a murine model of invasive pancreatic cancer. Int J Radiat Oncol Biol Phys. 2015;93(3):S95–6. https://doi.org/10.1016/j.ijrobp.2015.07.229.

    Article  Google Scholar 

  21. Puckett L, Fein MR, He X, Egeblad M. Targeting tumor-mediated immune suppression in a murine model of breast cancer: radiation and chemokine receptor CCR2. Int J Radiat Oncol Biol Phys. 2017;99(2 Supplement):S164. https://doi.org/10.1016/j.ijrobp.2017.06.377.

    Article  Google Scholar 

  22. Frey B, Gaipl US, Sarter K, Zaiss MM, Stillkrieg W, Rödel F, et al. Whole body low dose irradiation improves the course of beginning polyarthritis in human TNF-transgenic mice. Autoimmunity. 2009;42(4):346–8.

    Article  CAS  PubMed  Google Scholar 

  23. Derer A, Deloch L, Rubner Y, Fietkau R, Frey B, Gaipl US. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol. 2015;6:505. https://doi.org/10.3389/fimmu.2015.00505.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Du J, Su S, Li H, Shao J, Meng F, Yang M, et al. Low dose irradiation increases adoptive cytotoxic T lymphocyte migration in gastric cancer. Exp Ther Med. 2017;14(6):5711–6. https://doi.org/10.3892/etm.2017.5305.

    PubMed  PubMed Central  Google Scholar 

  25. Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 2002;62(5):1462–70.

    CAS  PubMed  Google Scholar 

  26. Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med. 2017;9(392):eaal0225. https://doi.org/10.1126/scitranslmed.aal0225.

    Article  PubMed  Google Scholar 

  27. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95. https://doi.org/10.1182/blood-2009-02-206870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25. https://doi.org/10.1038/nrc3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75. https://doi.org/10.1038/nrc3380.

    Article  CAS  PubMed  Google Scholar 

  30. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9. https://doi.org/10.1038/nm1622.

    Article  CAS  PubMed  Google Scholar 

  31. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–52. https://doi.org/10.1016/j.immuni.2014.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9. https://doi.org/10.1038/ni.3558.

    Article  CAS  PubMed  Google Scholar 

  33. Liang D, Xiao-Feng H, Guan-Jun D, Er-Ling H, Sheng C, Ting-Ting W, et al. Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. Biochim Biophys Acta. 2015;1852(11):2494–503. https://doi.org/10.1016/j.bbadis.2015.08.011.

    Article  PubMed  Google Scholar 

  34. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71(7):2488–96. https://doi.org/10.1158/0008-5472.CAN-10-2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–71. https://doi.org/10.1084/jem.20052494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2017;23(1):137–48. https://doi.org/10.1158/1078-0432.CCR-16-0870.

    Article  CAS  PubMed  Google Scholar 

  37. Burnette B, Weichselbaum RR. Radiation as an immune modulator. Semin Radiat Oncol. 2013;23(4):273–80. https://doi.org/10.1016/j.semradonc.2013.05.009.

    Article  PubMed  Google Scholar 

  38. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70. https://doi.org/10.1016/j.ijrobp.2003.09.012.

    Article  PubMed  Google Scholar 

  39. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, et al. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75(11):2232–42. https://doi.org/10.1158/0008-5472.CAN-14-3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kingsley DP. An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol. 1975;48(574):863–6. https://doi.org/10.1259/0007-1285-48-574-863.

    Article  CAS  PubMed  Google Scholar 

  41. Wersäll PJ, Blomgren H, Pisa P, Lax I, Kälkner KM, Svedman C. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 2006;45(4):493–7. https://doi.org/10.1080/02841860600604611.

    Article  PubMed  Google Scholar 

  42. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95. https://doi.org/10.1172/JCI67313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16(7):795–803. https://doi.org/10.1016/S1470-2045(15)00054-6.

    Article  CAS  PubMed  Google Scholar 

  44. Koller KM, Mackley HB, Liu J, Wagner H, Talamo G, Schell TD, et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biol Ther. 2017;18(1):36–42. https://doi.org/10.1080/15384047.2016.1264543.

    Article  CAS  PubMed  Google Scholar 

  45. Kropp LM, De Los Santos JF, McKee SB, Conry RM. Radiotherapy to control limited melanoma progression following ipilimumab. J Immunother. 2016;39(9):373–8. https://doi.org/10.1097/CJI.0000000000000142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7. https://doi.org/10.1038/nature14292.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12. https://doi.org/10.1016/S1470-2045(14)70189-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88. https://doi.org/10.1158/1078-0432.CCR-09-0265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David Gray for his writing assistance in the production of the manuscript. Cinzia Solinas and Pushpamali De Silva are fellows of the Belgian Fund for Scientific Research (FNRS)—Operation Télévie.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ZH, CS, and PDS carried out the bibliographic research and take responsibility for the data accuracy. All other authors drafted and wrote the manuscript, participated in the interpretation of the data, and revised the work critically for important intellectual content. All the authors read and approved the final version of the manuscript and agreed to be accountable for all aspects of the work to ensure its accuracy and integrity. MS coordinated and supervised the whole process and gave final approval for manuscript submission.

Corresponding author

Correspondence to Cinzia Solinas.

Ethics declarations

Conflict of Interest

The authors do not have any competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlavata, Z., Solinas, C., De Silva, P. et al. The Abscopal Effect in the Era of Cancer Immunotherapy: a Spontaneous Synergism Boosting Anti-tumor Immunity?. Targ Oncol 13, 113–123 (2018). https://doi.org/10.1007/s11523-018-0556-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0556-3

Navigation