Skip to main content
Log in

Mechanisms of microRNA-mediated gene regulation

  • Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are identified as a class of non-protein regulators and a new source for broad control of gene expression in eukaryotes. The past years have witnessed substantial progress in understanding miRNA functions and mechanisms, although a few controversies remain. Various hypotheses and models have been suggested for the mechanisms of miRNA repression, including translational inhibition at the level of initiation or elongation, rapid degradation of the nascent peptide, mRNA degradation, and mRNA sequestration into P bodies (processing bodies) and SGs (stress granules) for degradation or/and storage. Recently, some noncanonical miRNA regulation, such as miRNA activation and de-repression of miRNA inhibition, have been uncovered. This review discusses some recent advances about how miRNAs regulate their targets and various modes of miRNA function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guarnieri D J, Dileone R J. microRNAs: A new class of gene regulators. Annu Med, 2008, 40: 197–208 10.1080/07853890701771823, 1:CAS:528:DC%2BD1cXkt1Smtrw%3D

    Article  CAS  Google Scholar 

  2. Lee Y, Kim M, Han J, et al. microRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23: 4051–4060 10.1038/sj.emboj.7600385, 15372072, 1:CAS:528:DC%2BD2cXotlCrsrs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Borchert G M, Lanier W, Davidson B L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 2006, 13: 1097–1101 10.1038/nsmb1167, 17099701, 1:CAS:528:DC%2BD28Xht1KrurnO

    Article  PubMed  CAS  Google Scholar 

  4. Diederichs S, Haber D A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell, 2007, 131: 1097–1108 10.1016/j.cell.2007.10.032, 18083100, 1:CAS:528:DC%2BD1cXksFGgtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Hutvagner G, Simard M J. Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol, 2008, 9: 22–32 10.1038/nrm2321, 18073770, 1:CAS:528:DC%2BD2sXhsVKrsr3P

    Article  PubMed  CAS  Google Scholar 

  6. Farazi T A, Juranek S A, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development, 2008, 135: 1201–1214 10.1242/dev.005629, 18287206, 1:CAS:528:DC%2BD1cXltlaisbc%3D

    Article  PubMed  CAS  Google Scholar 

  7. Okamura K, Ishizuka A, Siomi H, et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev, 2004, 18: 1655–1666 10.1101/gad.1210204, 15231716, 1:CAS:528:DC%2BD2cXlvFKltrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Forstemann K, Horwich M D, Wee L, et al. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell, 2007, 130: 287–297 10.1016/j.cell.2007.05.056, 17662943, 1:CAS:528:DC%2BD2sXovFalt7o%3D

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tomari Y, Du T, Zamore P D. Sorting of Drosophila small silencing RNAs. Cell, 2007, 130: 299–308 10.1016/j.cell.2007.05.057, 17662944, 1:CAS:528:DC%2BD2sXovFalt7s%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Okamura K, Phillips M D, Tyler D M, et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol, 2008, 15: 354–363 10.1038/nsmb.1409, 18376413, 1:CAS:528:DC%2BD1cXktFyjtbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15–20 10.1016/j.cell.2004.12.035, 15652477, 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Grimson A, Farh K K, Jothston W K, et al. microRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell, 2007, 27: 91–105 10.1016/j.molcel.2007.06.017, 17612493, 1:CAS:528:DC%2BD2sXot1els7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science, 2005, 309: 1573–1576 10.1126/science.1115079, 16081698, 1:CAS:528:DC%2BD2MXpsFWju7k%3D

    Article  PubMed  CAS  Google Scholar 

  14. Thermann R, Hentze M W. Drosophila miR-2 induces pseudopolysomes and inhibits translation initiation. Nature, 2007, 447: 875–878 10.1038/nature05878, 17507927, 1:CAS:528:DC%2BD2sXms1Wjt78%3D

    Article  PubMed  CAS  Google Scholar 

  15. Chendrimada T P, Finn K J, Ji X, et al. microRNA silencing through RISC recruitment of eIF6. Nature, 2007, 447: 823–828 10.1038/nature05841, 17507929, 1:CAS:528:DC%2BD2sXms1Wjs7o%3D

    Article  PubMed  CAS  Google Scholar 

  16. Humphreys D T, Westman B J, Martin D I, et al. microRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA, 2005, 102: 16961–16966 10.1073/pnas.0506482102, 16287976, 1:CAS:528:DC%2BD2MXht1yksLvJ

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Mathonnet G, Fabian M R, Svitkin Y V, et al. microRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 2007, 317: 1764–1767 10.1126/science.1146067, 17656684, 1:CAS:528:DC%2BD2sXhtVGmsLbO

    Article  PubMed  CAS  Google Scholar 

  18. Kiriakidou M, Tan G S, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007, 129: 1141–1151 10.1016/j.cell.2007.05.016, 17524464, 1:CAS:528:DC%2BD2sXntVOnt70%3D

    Article  PubMed  CAS  Google Scholar 

  19. Wakiyama M, Takimoto K, Ohara O, et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev, 2007, 21: 1857–1862 10.1101/gad.1566707, 17671087, 1:CAS:528:DC%2BD2sXps1alsr4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Olsen P H, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 1999, 216: 671–680 10.1006/dbio.1999.9523, 10642801, 1:CAS:528:DC%2BD3cXltFyqtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. Nottrott S, Simard M J, Richter J D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol, 2006, 13: 1108–1114 10.1038/nsmb1173, 17128272, 1:CAS:528:DC%2BD28Xht1KrurnE

    Article  PubMed  CAS  Google Scholar 

  22. Petersen C P, Bordeleau M E, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell, 2006, 21: 533–542 10.1016/j.molcel.2006.01.031, 16483934, 1:CAS:528:DC%2BD28XisVansbs%3D

    Article  PubMed  CAS  Google Scholar 

  23. Wu L, Fan J, Belasco J G. microRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 2006, 103: 4034–4039 10.1073/pnas.0510928103, 16495412, 1:CAS:528:DC%2BD28XivFWitLk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wu L, Belasco J G. Let me count the ways: Mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell, 2008, 29: 1–7 10.1016/j.molcel.2007.12.010, 18206964, 1:CAS:528:DC%2BD1cXhtlWjt7s%3D

    Article  PubMed  Google Scholar 

  25. Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 2006, 312: 75–79 10.1126/science.1122689, 16484454, 1:CAS:528:DC%2BD28XjtFalsbo%3D

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Valencia-Sanchez M A, Hannon G J, et al. microRNA dependent localization of targeted mRNAs to mammalian P bodies. Nat Cell Biol, 2005, 7: 719–723 10.1038/ncb1274, 15937477, 1:CAS:528:DC%2BD2MXlslWhtb0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Sen G L, Blau H M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol, 2005, 7: 633–636 10.1038/ncb1265, 15908945, 1:CAS:528:DC%2BD2MXks1GmtLc%3D

    Article  PubMed  CAS  Google Scholar 

  28. Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet, 2008, 9: 102–114 10.1038/nrg2290, 18197166, 1:CAS:528:DC%2BD1cXnt1ensA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  29. Anderson P, Kedersha N. RNA granules. J Cell Biol, 2006, 172: 803–808 10.1083/jcb.200512082, 16520386, 1:CAS:528:DC%2BD28XisFKis7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Leung A K, Calabrese J M, Sharp P A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci USA, 2006, 103: 18125–18130 10.1073/pnas.0608845103, 17116888, 1:CAS:528:DC%2BD28XhtlWjt7zP

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Valencia-Sanchez M A, Liu J, Hannon G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 2006, 20: 515–524 10.1101/gad.1399806, 16510870, 1:CAS:528:DC%2BD28Xit1KmtLY%3D

    Article  PubMed  CAS  Google Scholar 

  32. Mazroui R, Di Marco S, Kaufman R J, et al. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell, 2007, 18: 2603–2618 10.1091/mbc.E06-12-1079, 17475769, 1:CAS:528:DC%2BD2sXnsVWqt7g%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007, 318: 1931–1934 10.1126/science.1149460, 18048652, 1:CAS:528:DC%2BD2sXhsVGjsLbK

    Article  PubMed  CAS  Google Scholar 

  34. Vasudevan S, Steitz J A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 2007, 128: 1105–1118 10.1016/j.cell.2007.01.038, 17382880, 1:CAS:528:DC%2BD2sXkslGms7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Vasudevan S, Tong Y, Steitz J A. Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle, 2008, 7: 1545–1549 18469529, 1:CAS:528:DC%2BD1cXptF2ntbk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. von Roretz C, Gallouzi I E. Decoding ARE-mediated decay: Is microRNA part of the equation? J Cell Biol, 2008, 181: 189–194 10.1083/jcb.200712054, 1:CAS:528:DC%2BD1cXltlWmsbs%3D

    Article  Google Scholar 

  37. Ørom U A, Nielsen F C, Lund A H. microRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 2008, 30: 460–471 10.1016/j.molcel.2008.05.001, 18498749, 1:CAS:528:DC%2BD1cXmslOitbk%3D

    Article  PubMed  Google Scholar 

  38. Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J, 2008, 27: 3300–3310 10.1038/emboj.2008.244, 19020517, 1:CAS:528:DC%2BD1cXhtl2gsLnF

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Kedde M, Agami R. Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle, 2008, 7: 899–903 18414021, 1:CAS:528:DC%2BD1cXnslWqsL8%3D

    Article  PubMed  CAS  Google Scholar 

  40. Bhattacharyya S N, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 2006, 125: 1111–1124 10.1016/j.cell.2006.04.031, 16777601, 1:CAS:528:DC%2BD28XmsVOms7o%3D

    Article  PubMed  CAS  Google Scholar 

  41. Kedde M, Strasser M J, Boldajipour B, et al. RNA-binding protein dnd1 inhibits microRNA access to target mRNA. Cell, 2007, 131: 1273–1286 10.1016/j.cell.2007.11.034, 18155131, 1:CAS:528:DC%2BD1cXmt1CnsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  42. Sandberg R, Neilson J R, Sarma A, et al. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 2008, 320: 1643–1647 10.1126/science.1155390, 18566288, 1:CAS:528:DC%2BD1cXnt1Oju70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Sethupathy P, Collins F S. MicroRNA target site polymorphisms and human disease. Trends Genet, 2008, 24: 489–497 10.1016/j.tig.2008.07.004, 18778868, 1:CAS:528:DC%2BD1cXhtFOltbfO

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo-Fang Liu.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2005 CB 724603) and the National Natural Science Foundation of China (Grant No. 30770474)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Liu, MF. Mechanisms of microRNA-mediated gene regulation. SCI CHINA SER C 52, 1111–1116 (2009). https://doi.org/10.1007/s11427-009-0152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0152-y

Keywords

Navigation