Skip to main content
Log in

Beyond the rodent model: Calorie restriction in rhesus monkeys

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Lifespan extension and reduction of age-related disease by calorie restriction (CR) are among the most consistent findings in gerontological research. The well known effects of CR have been demonstrated many times in rodents and other short-lived species. However, effects of CR on aging in longer-lived species, more closely related to humans, were unknown until recently. Studies of CR and aging using nonhuman primates (rhesus monkeys) were begun several years ago at the National Institute on Aging, the University of Wisconsin-Madison, and the University of Maryland. These studies are beginning to yield useful data regarding the effects of this nutritional intervention in primates. Several studies from these ongoing investigations have shown that rhesus monkeys on CR exhibit physiological responses to CR that parallel findings in rodents. In addition, several potential biomarkers of aging are being evaluated and preliminary findings suggest the possibility that CR in rhesus monkeys could slow the rate of aging and reduce age-related disease, specifically diabetes and cardiovascular disease. It will be several years before conclusive proof that CR slows aging and extends life span in primates is established, however, results from these exciting studies suggest the possibility that the anti-aging effects of CR reported in rodents also occur in longer-lived species such as nonhuman primates, strenghtening the possibility that this nutritional intervention will also prove beneficial in longer-lived species, including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weindruch, R, and Walford, R: The retardation of aging and disease by dietary restriction. Springfield, IL, Charles C. Thomas, 1988.

    Google Scholar 

  2. Yu, BP: Modulation of aging processes by dietary restriction. Boca Raton, CRC Press, 1994.

    Google Scholar 

  3. McCay, CM, Crowell, MF, and Maynard, LA: The effect of retarded growth upon the length of the lifespan and upon ultimate body size. J. Nutr., 10: 63–79, 1935.

    CAS  Google Scholar 

  4. Ingram, DK, Cutler, RG, Weindruch, R, Renquist, DM, Knapka, JJ, April, M, Belcher, CT, Clark, MA, Hatcherson, CD, Marriott, BM, and Roth, GS: Dietary restriction and aging: the initiation of a primate study. J. Gerontol., 45: B148–B163, 1990.

    PubMed  CAS  Google Scholar 

  5. Kemnitz, JW, Weindruch, R, Roecker, EB, Crawford, K, Kaufman, PL, and Ershler, WB: Dietary restriction of adult male rhesus monkeys: Design, methodology and preliminary findings from the first year of study. J. Gerontol., 48:1, B17–B26, 1993.

    Google Scholar 

  6. Bodkin, NL, Ortmeyer, HK, and Hansen, BC: Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J. Gerontol. Biol. Sci., 50A:3, B142–B147, 1995.

    Google Scholar 

  7. Lane, MA, Reznick, AZ, Tilmont, EM, Lanir, A, Ball, SS, Read, V, Ingram, DK, Cutler, RG, Roth, GS: Aging and food restriction alters some indices of bone metabolism in male rhesus monkeys (Macacamulatta). J. Nutr., 125: 1600–1610, 1995.

    PubMed  CAS  Google Scholar 

  8. Hansen, BC, and Bodkin, NL: Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus. Diabetologia, 29: 713–719, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. National Research Council: Nutrient requirements of laboratory animals. National Academy of Sciences, Washington, DC., 1978.

    Google Scholar 

  10. Kemnitz, JW, Roecker, EB, Weindruch, R, Olson, DF, Baum, ST, and Bergman, RN: Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am. J. Physiol. 266: E540–E547, 1994.

    PubMed  CAS  Google Scholar 

  11. Lane, MA, Ball, SS, Ingram, DK, Cutler, RG, Engel, J, Read, V, and Roth, GS: Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am. J. Physiol., 268: 31, E941–E948, 1995.

    Google Scholar 

  12. Lane, MA, Baer, DJ, Tilmont, EM, Rumpler, WV, Ingrain, DK, Roth, GS, and Cutler, RG: Energy balance in rhesus monkeys subjected to long-term dietary restriction. J. Gerontol., 50A: B295–B302, 1995.

    Google Scholar 

  13. Lane, MA, Ingram, DK, Barnard, DE, Knapka, JJ, Cutler, RG, and Roth, GS: Dietary restriction in nonhuman primates; progress report on the NIA study. Annals New York Acad. of Sci., 673: 36–45, 1992.

    CAS  Google Scholar 

  14. Weindruch, R, Marriott, BM, Conway, J, Knapka, JJ, Lane, MA, Cutler, RG, Roth, GS, and Ingram, DK: Measures of body size and growth in rhesus and squirrel monkeys subjected to long-term dietary restriction. Am. J. Primatol., 35: 207–228, 1995.

    Article  Google Scholar 

  15. Hansen, BC, and Bodkin, NL: Primary prevention of diabetes mellitus by prevention of obesity in monkeys. Diabetes, 42: 1809–1814, 1993.

    PubMed  CAS  Google Scholar 

  16. Ramsey, JJ, Roecker, EB, Weindruch, R, Baum, ST, and Kemnitz, JW: Thermogenesis of adult male rhesus monkeys: results through 66 months of dietary restriction. FASEB J., 10: A726, 1996.

    Google Scholar 

  17. Tilmont, EM, Roth, GS, Ingram, DK, and Lane, MA: Calorie restriction reduces body weight, body fat, and lean mass in rhesus monkeys. Gerontology Society of America, 36: 1, 19, 1996.

    Google Scholar 

  18. Merry, BJ, and Holehan, AM: Serum profiles of LH, FSH, testosterone and 5-alpha-DHT from 21 to 1000 days of age in ad libitum fed and dietary restricted rats. Exp. Gerontol. Biol. Sci., 16: 431–444, 1985.

    Article  Google Scholar 

  19. Pierpaoli, W: Changes of hormonal status in young mice by restricted calorie diet. Relation to life span extention. Preliminary results. Experientia, 33: 1612–1614, 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Kalu, DN, Hardin, RR, Cockerham, R, and Yu, BP: Aging and dietary modulation of rat skeleton and parathyroid hormone. Endocrinology 115: 1239–1247, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Kalu, DN, Hardin, RR, Cockerham, R, Norlin, BK, and Egan, JW: Lifelong food restriction prevents senile osteoporosis and hyperparathyroidism in F344 rats. Mech. Ageing Dev., 26: 103–112, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Roth, GS, Blackman, MR, Ingram, DK, Lane, MA, Ball, SS, and Cutler, RG: Age related changes in androgen levels of rhesus monkeys subjected to diet restriction. Endocrine Journal, 1: 227–234, 1993.

    Google Scholar 

  23. Masoro, EJ, McCarter, RJM, Katz, MS, and McMahan, CA: Dietary restriction alters characteristics of glucose fuel use. J. GerontoL Biol. Sci., 47: B202–B208, 1992.

    CAS  Google Scholar 

  24. Kristal, BS, and Yu, BP: Aging and its modulation by dietary restriction, in Modulation of aging processes by dietary restriction. Yu, BP, ed. Boca Raton, CRC Press, 1994, pp. 1–35.

    Google Scholar 

  25. Pearl, R: The rate of living. New York, Alfred Knopf, 1928, p. 185.

    Google Scholar 

  26. Sacher, GA: Life span table modification and life prolongation, in The handbook of the biology of aging. New York, Van Nostrand Reinhold, 1977.

    Google Scholar 

  27. Harman, D: The aging process. Proc. Natl. Acad. Sci. 78: 7124–7128, 1981.

    PubMed  CAS  Google Scholar 

  28. McCarter, RJ, and Palmer, J: Energy metabolism and aging: a lifelong study in Fischer 344 rats. Am. J. Physiol., 263: E448, 1992.

    PubMed  CAS  Google Scholar 

  29. McCarter, RJ, and McGee, JR: Transient reduction of metabolic rate by food restriction. AM. J. Physiol. 257: E175–E179, 1989.

    PubMed  CAS  Google Scholar 

  30. Gonzalez-Pacheco, DM, Buss, WC, Koehler, KM, Woodside, WF, Alpert, SS: Energy restriction reduces metabolic rate in adult male Fischer-344 rats. J. Nutr. 123: 90–97, 1993.

    Google Scholar 

  31. Lynn, WS, and Wallwork, JC: Does food restriction retard aging by reducing metabolic rate? J. Nutr., 122: 1917–1918, 1992.

    PubMed  CAS  Google Scholar 

  32. McCarter, RJM: Energy utilization, in Handbook of Physiology, Section 11: Aging, edited by Edward J. Masoro, New York, Oxford University Press, 1995, pp. 95–118.

    Google Scholar 

  33. Weindruch, RH, Kristie, JA, Cheney, KE, and Walford, RL: Influence of controlled dietary restriction on immunologic function and aging. Federation Proc., 38: 2007–2016, 1979.

    CAS  Google Scholar 

  34. Duffy, PH, Feuers, RJ, and Hart, RW: Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol. Int., 7: 291–303, 1990.

    PubMed  CAS  Google Scholar 

  35. Duffy, PH, Feuers, RJ, Leakey, JA, Nakamura, KD, Turturro, A, and Hart, RW: Effect of chronic restriction on the synchronization of various physiological measures in the male Fischer 344 rat. Mech. Ageing Dev. 48: 117–133, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Himms-Hagen, J: Food restriction increases torpor and improves brown adipose tissue thermogenesis in ob/ob mice. Am. J. Physiol., 248: E531–E539, 1985.

    PubMed  CAS  Google Scholar 

  37. Nelson, W, and Halberg, F: Meal-timing, circadian rhythms and life span of mice. J. Nutr., 116: 2244–2253, 1986.

    PubMed  CAS  Google Scholar 

  38. Duffy, PH, Feuers, R, Nakamura, KD, Leakey, J, and Hart, RW: Effect of chronic caloric restriction on the synchronization of various physiological measures in old female Fischer 344 rats. Chronobiol. Int., 7: 113–124, 1990.

    PubMed  CAS  Google Scholar 

  39. Lyman, CP, O’brian, RC, Green, GC, Papafrangos, ED: Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science, 212: 668–670, 1981.

    PubMed  CAS  Google Scholar 

  40. Saint Gironss, H: Ecologie et ethologie des viperes de France. Ann. Sci. Nat. Zool., 14: 263–343, 1981.

    Google Scholar 

  41. Lane, MA, Baer, DJ, Rumpler, WV, Weindruch, R, Ingram, DK, Tilmont, EM, Cutler, RG, and Roth, GS: Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Nat. Acad. Sci., 93: 4159–4164, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Masoro, EJ, Katz, MS and McMahan: Evidence for the glycation theory of aging from the food-restricted rodent model. J. Gerontol. Biol. Sci., 44: B20–B22, 1989.

    CAS  Google Scholar 

  43. Kalant, N, Steward, J, and Kaplan, R: Effect of diet restriction on glucose metabolism and insulin responsiveness in aging rats. Mech. Ageing Dev., 46: 89–104, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Reaven, EP, Wright, CE, Mouden, R, Solomon, H, and Reaven, GM: Effect of age and diet on insulin secretion and insulin action in the rat. Diabetes, 32: 175–179, 1983.

    PubMed  CAS  Google Scholar 

  45. Ducimetiere, PE, Eschwege, E, Papoz, JL, Richard, JL, Claude, JR, and Rosselin, G: Plasma concentrations of glucose, insulin and percent glycated hemoglobin are unaltered by food restriction in rhesus and squirrel monkeys. J. Gerontol. Biol. Sci., 47: B9–B12, 1992.

    Google Scholar 

  46. Ferrari, P, and Weidmann, P: Insulin, insulin sensitivity and hypertension. J. Hypertens., 8: 491–500, 1990.

    PubMed  CAS  Google Scholar 

  47. Stout, R: Insulin and arteroma. Diabetes Care, 13: 631–654, 1990.

    PubMed  CAS  Google Scholar 

  48. Miller, NE: Associations of hgh-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am. Heart J., 113: 589–597, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Stampfer, MJ, Sacks, MF, Salvini, S, Willet, WC, and Hennekens, CH: A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. New Engl. J. Med., 325: 373–381, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Buring, JE, O’Conner, JT, Goldhaber, SZ, Rosner, B, Herbert, PN, Blum, CB, Breslow, JL, and Hennekens, CH: Decreased HDL2 and HDL3 cholesterol, apo A-I and apo A-II, and increased risk of myocardial infarction. Circulation, 85: 22–29, 1992.

    PubMed  CAS  Google Scholar 

  51. Katzel, LI, Coon, PJ, Busby, MJ, Gottleib, SO, Krauss, RM, and Goldberg, AP: Reduced HDL2 cholesterol subspecies and elevated posthepatic lipase activity in older men with abdominal obesity and asymptomatic mycardial ischemia. Arterioscler. Throm., 12: 814–823, 1992.

    CAS  Google Scholar 

  52. Gaziano, JM, Buring, JE, Breslow, JL, Goldhaber, SZ, Rosner, B, VanDenburgh, M, & et al.: Moderate alcohol intake, increased levels of high density lipoproteins, and subfractions, and decreased risk of mycardial infarction. New Engl. Med. 329: 1829–1834, 1993.

    Article  CAS  Google Scholar 

  53. Sweetnam, PM, Bolton, CH, Yarnell, WG, Bainton, D, Baker, IA, Elwood, PC, and Miller, NE: Associations of HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation, 90: 769–774, 1994.

    PubMed  CAS  Google Scholar 

  54. Yu, BP, Masoro, EJ, and McMahan, CA: Nutritional influences on aging of Fischer 344 rats: I. physical, metabolic, and longevity characteristics. J. Gerontol. Biol. Sci., 40: 657–670, 1985.

    CAS  Google Scholar 

  55. Liepa, GU, Masoro, EJ, Bertrand, HA, and Yu, BP: Food restriction as a modulator of age-related changes in serum lipids. Am. J. Physiol., 283: E253–E257, 1980.

    Google Scholar 

  56. Choi, JM, Gogo, S, Ikeda, I, and Sugano, M: Age-related changes in lipid metabolism. Biochim. Biophys. Acta, 963: 237–242, 1988.

    PubMed  CAS  Google Scholar 

  57. Masoro, EJ, Compton, C, Yu, BP, and Bertrand, H: Temporal and compositional dietary restrictions modulate age-related changes in serum lipids. J. Nutr., 113: 880–892, 1983.

    PubMed  CAS  Google Scholar 

  58. Nakamura, E. Lane, MA, Roth, GS, Cutler, RC, and Ingram, DK: Evaluating measures of hematology and blood chemistry in male rhesus monkeys as biomarkers of aging. Exp. Gerontol., 29: 2, 151–177, 1994.

    Article  Google Scholar 

  59. Sell, DR, Lane, MA, Johnson, WA, Masoro, EJ, Mock, OB, Reiser, KM, Fogarty, JF, Cutler, RG, Ingram, DK, Roth, GS, and Monnier, VM: Longevity and the genetic determination of collagen glycoxidation kenetics in mammalian senescence. Pro. Natl. Acad. Sci., 93: 485–490, 1996.

    Article  CAS  Google Scholar 

  60. Roth, GS, Kowatch, MA, Hengemihle, J, Ingram, DK, Spangler, EL, Johnson, LK, Lane, MA: Effect of age and caloric restriction on cutaneous wound closure in rats and monkeys. (In Press: J. Gerontol. Biol. Sci.)

  61. Harrison, DE, and Archer, JR: Biomarkers of aging: tissue markers. Future research needs, strategies, directions and priorities, Exp. Gerontol., 23: 309–321, 1988.

    Article  PubMed  CAS  Google Scholar 

  62. Reed, MJ, Penn, PE, Li, Y, Beinbaum, R, Vernon, RB, Johnson, TS, Pendergrass, WR, Sage, EH, Abrass, IB, Wolf, NS: Enhanced cell proliferation and biosynthesis mediate improved would repair in refed, caloric-restricted mice. Mech. of Aging and Dev., 89: 21–43. 1996.

    Article  CAS  Google Scholar 

  63. Pignolo, RJ, Masoro, EJ, Nichols, WW, Bradt, CI, Cristofalo, VJ: Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp. Cell. Res., 201: 16–22, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Williams, DD, Short, R, and Bowden, DM: Fingernail growth rate as a biomarker of aging in the pigtailed macaque (Macaca nemestrina). Exp. Gerontol. Biol. Sci., 25: 423–432, 1990.

    Article  CAS  Google Scholar 

  65. Orentreich, N, Zimmerman, A, and Matias, JR: Pratical handbook of human biological age determination. Boca Raton, CRC Press, 1994, pp. 391–396.

    Google Scholar 

  66. Barrett-Connor, E, Khaw, K, Yen, SSC: A prospective study of dehydroepiandrosterone sulfate, mortality and cardiovascular disease. N. Engl. J. Med., 315: 1519–1524, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Sapolsky, RM, Vogelman, JH, Orentreich, N, and Altmann, J: Senescent decline in serum dehydroepiandrosterone sulfate concentrations in a population of wild baboons. J. Gerontol. Biol. Sci., 48: 5, B196–B200, 1993.

    Google Scholar 

  68. Lane, MA, Ingram, DK, Roth, GS. Effect of aging and long-term calorie restriction on DHEA and DHEA sulfate in rhesus monkeys. In Dehydroepiandrosterone (DHEA) and Aging, Annals New York Acad. Sci. Vol 774:319–322.

  69. Yen, T, Allan, J, Pearson, D, Acton, J, and Greenberg, M: Prevention of obesity in A vy/a mice by dehydroepiandrosterone. Lipids, 12: 409–417, 1977.

    PubMed  CAS  Google Scholar 

  70. Schwartz, A, Pasko, L, Whitcomb, J: Inhibition of tumor development by dehydroepiandrosterone and related steroids. Toxicol. Path., 14: 357–365, 1986.

    Article  CAS  Google Scholar 

  71. Schwartz, AG, and Pashko, LL: Food restriction inhibits [3H] 7, 12-dimenthylbenz[a]anthracene binding to mouse skin DNA and tetracanoyl-phorbol-13-acetate stimulation of epidermal [3H] thymidine incorporation. Anti-Cancer Res., 6: 1279–1282, 1986.

    CAS  Google Scholar 

  72. Volk, MJ, Pugh, TD, Kim, M, Frith, CH, Daynes, RA, Ershler, WB, and Weindruch, R,: Dietary restriction from middle age attenuates age-associated lymphoma development and interleukin-6 dysregulation in C57BL/6 mice. Cancer Res., 54: 3054–3061.

  73. Ershler, WB, Sun, WH, Binkley, N, Gravenstein, S, Bolk, MJ, Kamoske, G, Klopp, RG, Roecker, EB, Daynes, RA, and Weindruch, R: Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res., 12: 225–230, 1993.

    PubMed  CAS  Google Scholar 

  74. Cocchi, D, Cattaneo, L, Lane, MA, Ingram, DK, Cutler, RG, and Roth, GS: Effect of long-term dietary restriction on the somatotrophic axis in adult and aged monkeys. Neuroendocrinol. Lett., 17: 181–186, 1995.

    CAS  Google Scholar 

  75. Cocchi, D, Bianchi, S, Moretti, R, Raimondi, J, and Algeri, S: Effect of lifelong hypocaloric diet on growth hormone secretion in adult and old male rats. Neuroendrocrinol. Lett., 13: 14–47, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lane.

About this article

Cite this article

Lane, M.A., Ingram, D.K. & Roth, G.S. Beyond the rodent model: Calorie restriction in rhesus monkeys. AGE 20, 45–56 (1997). https://doi.org/10.1007/s11357-997-0004-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-997-0004-2

Keywords

Navigation