Skip to main content

Advertisement

Log in

Comparison of [18F]-Tracers in Various Experimental Tumor Models by PET Imaging and Identification of an Early Response Biomarker for the Novel Microtubule Stabilizer Patupilone

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

An Erratum to this article was published on 18 June 2009

Abstract

Purpose

The suitability of [18F]FDG, [18F]FLT, [18F]FET, and [18F]FCH as non-invasive positron emission tomography (PET) biomarkers for monitoring response to chemotherapy was analyzed in various experimental tumor models.

Procedures

Tracer uptake into three syngeneic rodent tumor models and ten human xenograft models was evaluated using semiquantitative analysis of small-animal PET data. Murine RIF-1 fibrosarcomas and [18F]FLT were selected to monitor the effects of the novel cytotoxic patupilone.

Results

Except [18F]FCH, all tracers provided good tumor visualization. Highest [18F]FDG uptake was identified in syngeneic tumors. Xenograft models, however, showed low [18F]FDG SUVs and were better visualized by [18F]FLT. Monitoring the effects of patupilone on [18F]FLT uptake in RIF-1 tumors revealed a significant decrease of tracer uptake after 24 h, which strongly negatively correlated with apoptosis.

Conclusion

[18F]FLT PET of experimental tumors is a viable complement to [18F]FDG for preclinical drug development. [18F]FLT may be an excellent biomarker for patupilone-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233

    Article  PubMed  CAS  Google Scholar 

  2. Di Chiro G, De La Paz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  3. Hicks RJ, Kalff V, MacManus MP et al (2001) 18F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42:1596–1604

    PubMed  CAS  Google Scholar 

  4. Weber WA (2005) Use of PET monitoring cancer therapy and for predicting outcome. J Nucl Med 46:983–995

    PubMed  CAS  Google Scholar 

  5. Lammertsma AA, Hoekstra CJ, Giaccone G et al (2006) How should we analyse FDG PET studies for monitoring tumour response. Eur J Nucl Med Mol Imaging 33:16–21

    Article  PubMed  Google Scholar 

  6. Kenny LM, Aboagye EO, Price RM (2004) Positron emission tomography imaging of cell proliferation in oncology. Clin Onc 16:176–185

    Article  CAS  Google Scholar 

  7. Spaeth N, Wyss MT, Weber B et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-l-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumour recurrence. J Nucl Med 45:1931–1938

    PubMed  CAS  Google Scholar 

  8. Katz-Brull R, Degani H (1996) Kinetics of choline transport and phosphorylation in human breast cancer cells: NMR application of the zero trans method. Anticancer Res 16:1375–1380

    PubMed  CAS  Google Scholar 

  9. Belt JA, Marina NM, Phelps DA et al (1993) Nucleoside transport in normal and neoplastic cells. Adv. Enzyme Regul 33:235–252

    Article  PubMed  CAS  Google Scholar 

  10. Kong W, Engel K, Wang J (2004) Mammalian nucleoside transporters. Curr Drug Metab 5:63–84

    Article  PubMed  CAS  Google Scholar 

  11. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  12. Grierson JR, Shields AF (2000) Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 27:143–156

    Article  PubMed  CAS  Google Scholar 

  13. Rasey JS, Grierson JR, Wiens LW et al (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 438:1210–1217

    Google Scholar 

  14. Buck AK, Halter G, Schirrmeister H et al (2003) Imaging proliferation in lung tumours with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1432–1434

    Google Scholar 

  15. Mier W, Haberkorn U, Eisenhut M (2002) [18F]FLT; portrait of a proliferation marker. Eur J Nucl Med 29:165–169

    Article  CAS  Google Scholar 

  16. Shields AF (2006) Positron emission tomography measurement of tumour metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150

    Article  PubMed  Google Scholar 

  17. Kenny LM, Aboagye EO, Price PM (2004) Positron emission tomography imaging of cell proliferation in oncology. Clin Oncol 16:176–185

    Article  CAS  Google Scholar 

  18. Heiss P, Mayer S, Herz M et al (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med 40:1367–1373

    PubMed  CAS  Google Scholar 

  19. Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumour imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  20. Pauleit D, Stoffels G, Schaden W et al (2005) PET with O-(2-18F-fluoroethyl)-l-tyrosine in peripheral tumours: first clinical results. J Nucl Med 46:411–416

    PubMed  CAS  Google Scholar 

  21. Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  22. Wyss MT, Spaeth N, Biollaz G et al (2007) Uptake of 18F-fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med 48:608–614

    Article  PubMed  CAS  Google Scholar 

  23. Wang HE, Wu SY, Chang CW et al (2005) Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumour-bearing animal model. Nucl Med Biol 32:367–375

    Article  PubMed  CAS  Google Scholar 

  24. Rau FC, Weber WA, Wester HJ et al (2002) O-(2-[18F]fluoroethyl)-l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. J Nucl Med 29:1039–1046

    Article  CAS  Google Scholar 

  25. DeGrado TR, Baldwin SW, Wang S et al (2001) Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805–1814

    PubMed  CAS  Google Scholar 

  26. Price DT, Coleman RE, Liao RP et al (2002) Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168:273–280

    Article  PubMed  Google Scholar 

  27. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995

    PubMed  CAS  Google Scholar 

  28. Shinoura N, Nishijima M, Hara T et al (1997) Brain tumours: detection with C-11 choline PET. Radiology 202:497–503

    PubMed  CAS  Google Scholar 

  29. Hara T, Inagaki K, Kosaka N et al (2000) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:1507–1513

    PubMed  CAS  Google Scholar 

  30. Hara T, Bansal A, DeGrado TR (2006) Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging 5:498–509

    PubMed  Google Scholar 

  31. McSheehy PMJ Allegrini PR Ametamey SM et al (2005) The anticancer agent RAD001 rapidly inhibits 18F-FDG uptake by sensitive but not resistant tumours. 52nd Meeting Society Nuclear Medicine, abstract 1238

  32. Altmann K-H (2003) Epothilone B and its analogs—a new family of anticancer agents. Mini Rev Med Chem 3:149–158

    Article  PubMed  CAS  Google Scholar 

  33. Goodin S, Kane MP, Rubin EH (2004) Epothilones: mechanism of action and biologic activity. J Clin Oncol 22:2015–2025

    Article  PubMed  CAS  Google Scholar 

  34. Ferretti S, Allegrini PR, O’Reilly T et al (2005) Patupilone induced vascular disruption in orthotopic rodent tumour models detected by magnetic resonance imaging and interstitial fluid pressure. Clin Cancer Res 11:7773–7784

    Article  PubMed  CAS  Google Scholar 

  35. Leyton J, Latigo JR, Perumal M et al (2005) Early detection of tumour response to chemotherapy by 3′-deoxy-3′[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumour model in vivo. Cancer Res 65:4202–4010

    Article  PubMed  CAS  Google Scholar 

  36. Kim WD, Ahn D, Oh Y et al (2006) New class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc 128:16394–16397

    Article  PubMed  CAS  Google Scholar 

  37. Rudin M, McSheehy PMJ, Allegrini PR et al (2005) PTK787/ZK222584, a tyrosine kinase inhibitor of vascularendothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed 18:308–332

    Article  PubMed  CAS  Google Scholar 

  38. Missimer J, Madi Z, Honer M et al (2004) Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 49:2069–2081

    Article  PubMed  Google Scholar 

  39. Jeavons AP, Chandler RA, Dettmar CAR (1999) A 3D HIDAC-PET camera with submillimetre resolution for imaging small animals. IEEE Trans Nucl Sci 46:468–473

    Article  Google Scholar 

  40. Reader AJ, Erlandsson K, Flower MA et al (1998) Fast accurate iterative reconstruction for low-statistics positron volume imaging. Phys Med Biol 43:835–846

    Article  PubMed  CAS  Google Scholar 

  41. Mikolajczyk K, Szabatin M, Rudnicki P et al (1998) A JAVA environment for medical image data analysis: initial application for brain PET quantification. Med Inform (Lond) 23:207–214

    Article  CAS  Google Scholar 

  42. O’Reilly T, Wartmann M, Brueggen J et al (2009) Pharmacokinetic profile of the novel microtubule stabilizer patupilone in tumour-bearing rodents and comparison of anti-cancer activity with other MTS in multi-drug resistant human colon tumour cells in vitro and in vivo. Cancer Chemother. Pharmacol 62(6):1045–1054

    Google Scholar 

  43. McSheehy PMJ, Robinson S, Ojugo A et al (1998) Carbogen breathing increases 5-fluorouracil uptake and cytotoxicity in hypoxic RIF-1 tumours: a magnetic resonance study in vivo. Cancer Res 58:1185–1194

    PubMed  CAS  Google Scholar 

  44. Lee L, Sharma S, Morgan B et al (2006) Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastases model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol 7:761–771

    Article  Google Scholar 

  45. Robinson S, Rijken P, Howe F et al (2003) Assessment of tumour vascular development and function by susceptibility MRI methods and immunohistochemistry. J Magn Res 17:445–454

    Article  Google Scholar 

  46. Cooper RA, Carrington BM, Loncaster JA et al (2000) Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59

    Article  PubMed  CAS  Google Scholar 

  47. Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252

    Article  PubMed  CAS  Google Scholar 

  48. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    PubMed  CAS  Google Scholar 

  49. Lee K-H, Ko B-H, Paik J-Y et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46:1531–1536

    PubMed  CAS  Google Scholar 

  50. Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-Deoxy-3′-3H-fluorothymidine using preclinical tumour models. Clin Cancer Res 12:4590–4597

    Article  PubMed  CAS  Google Scholar 

  51. Landberg G, Tan EM, Roos G (1990) Flow cytometric multiparameter analysis of proliferating cell nuclear antigen/cyclin and Ki-67 antigen: a new view of the cell cycle. Exp Cell Res 187(1):111–118

    Article  PubMed  CAS  Google Scholar 

  52. Quiñones-Hinojosa A, Sanai N, Smith JS (2005) Techniques to assess the proliferative potential of brain tumours. J Neurooncol 74:19–30

    Article  PubMed  Google Scholar 

  53. Eriksson S, Kierdaszuk B, Munch-Petersen B et al (1991) Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem Biophys Res Commun 176:586–592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the team of Rolf Hesselmann and colleagues (PET Center, Division of Nuclear Medicine at University Hospital Zurich) for [18F]FET and [18F]FCH production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Honer.

Additional information

T. Ebenhan and M. Honer contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11307-009-0246-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebenhan, T., Honer, M., Ametamey, S. et al. Comparison of [18F]-Tracers in Various Experimental Tumor Models by PET Imaging and Identification of an Early Response Biomarker for the Novel Microtubule Stabilizer Patupilone. Mol Imaging Biol 11, 308–321 (2009). https://doi.org/10.1007/s11307-009-0216-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0216-1

Key words

Navigation