Skip to main content

Advertisement

Log in

Expression, signaling, and function of P2X7 receptors in bone

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BzATP:

2′,3′-O-(4-benzoylbenzoyl)-ATP

[Ca2+]i :

cytosolic free Ca2+ concentration

ERK:

extracellular signal-regulated kinase

LPA:

lysophosphatidic acid

M-CSF:

macrophage colony-stimulating factor

NFAT:

nuclear factor of activated T cells

NF-κB:

nuclear factor κB

OPG:

osteoprotegerin

Osx:

Osterix

PLA2 :

phospholipase A2

PLD:

phospholipase D

PGE2 :

prostaglandin E2

PKC:

protein kinase C

RANK:

receptor activator of NF-κB

Runx2:

runt-related transcription factor-2

References

  1. Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183:1–44

    Article  PubMed  Google Scholar 

  2. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  PubMed  CAS  Google Scholar 

  3. Novack DV, Teitelbaum SL (2008) The osteoclast: friend or foe? Annu Rev Pathol 3:457–484

    Article  PubMed  CAS  Google Scholar 

  4. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  5. Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    Article  PubMed  CAS  Google Scholar 

  6. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  7. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  8. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  PubMed  CAS  Google Scholar 

  9. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  10. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  PubMed  CAS  Google Scholar 

  11. Bonewald LF (2006) Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3:7–15

    PubMed  Google Scholar 

  12. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  13. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  14. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  PubMed  CAS  Google Scholar 

  15. Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–41156

    Article  PubMed  CAS  Google Scholar 

  16. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  17. Dempster DW, Lian JB, Goldring SR (2006) Anatomy and functions of the adult skeleton. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th edn. American Society for Bone and Mineral Research, Washington, pp 7–11

    Google Scholar 

  18. Dixon SJ, Sims SM (2000) P2 purinergic receptors on osteoblasts and osteoclasts: Potential targets for drug development. Drug Dev Res 49:187–200

    Article  CAS  Google Scholar 

  19. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  20. Hoebertz A, Arnett TR, Burnstock G (2003) Regulation of bone resorption and formation by purines and pyrimidines. Trends Pharmacol Sci 24:290–297

    Article  PubMed  CAS  Google Scholar 

  21. Jorgensen NR, Steinberg TH (2007) Purinergic signaling in osteoblasts. In: Burnstock G, Arnett TR (eds) Nucleotides and regulation of bone cell function. CRC, Boca Raton, pp 1–24

    Google Scholar 

  22. Korcok J, Sims SM, Dixon SJ (2007) P2 nucleotide receptor signaling in osteoclasts. In: Burnstock G, Arnett TR (eds) Nucleotides and regulation of bone cell function. CRC, Boca Raton, pp 25–59

    Google Scholar 

  23. Buckley KA, Gartland A, Gallagher JA (2007) The role of purinergic signaling in the interactions between skeletal cells. In: Burnstock G, Arnett TR (eds) Nucleotides and regulation of bone cell function. CRC, Boca Raton, pp 61–74

    Google Scholar 

  24. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283

    Article  PubMed  CAS  Google Scholar 

  25. Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367

    Article  PubMed  CAS  Google Scholar 

  26. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura E, Uezono Y, Narusawa K, Shibuya I, Oishi Y, Tanaka M, Yanagihara N, Nakamura T, Izumi F (2000) ATP activates DNA synthesis by acting on P2X receptors in human osteoblast-like MG-63 cells. Am J Physiol Cell Physiol 279:C510–C519

    PubMed  CAS  Google Scholar 

  28. Hoebertz A, Townsend-Nicholson A, Glass R, Burnstock G, Arnett TR (2000) Expression of P2 receptors in bone and cultured bone cells. Bone 27:503–510

    Article  PubMed  CAS  Google Scholar 

  29. Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16:846–856

    Article  PubMed  CAS  Google Scholar 

  30. Jorgensen NR, Henriksen Z, Sorensen OH, Eriksen EF, Civitelli R, Steinberg TH (2002) Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 277:7574–7580

    Article  PubMed  CAS  Google Scholar 

  31. Orriss IR, Knight GE, Ranasinghe S, Burnstock G, Arnett TR (2006) Osteoblast responses to nucleotides increase during differentiation. Bone 39:300–309

    Article  PubMed  CAS  Google Scholar 

  32. Panupinthu N, Zhao L, Possmayer F, Ke HZ, Sims SM, Dixon SJ (2007) P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem 282:3403–3412

    Article  PubMed  CAS  Google Scholar 

  33. Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ (2008) P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol 181:859–871

    Article  PubMed  CAS  Google Scholar 

  34. Liu D, Genetos DC, Shao Y, Geist DJ, Li J, Ke HZ, Turner CH, Duncan RL (2008) Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca2+- and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42:644–652

    Article  PubMed  CAS  Google Scholar 

  35. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  36. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  37. Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    PubMed  CAS  Google Scholar 

  38. Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 157:5627–5637

    PubMed  CAS  Google Scholar 

  39. Alzola E, Perez-Etxebarria A, Kabre E, Fogarty DJ, Metioui M, Chaib N, Macarulla JM, Matute C, Dehaye JP, Marino A (1998) Activation by P2X7 agonists of two phospholipases A2 (PLA2) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem 273:30208–30217

    Article  PubMed  CAS  Google Scholar 

  40. Okumura H, Shiba D, Kubo T, Yokoyama T (2008) P2X7 receptor as sensitive flow sensor for ERK activation in osteoblasts. Biochem Biophys Res Commun 372:486–490

    Article  PubMed  CAS  Google Scholar 

  41. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–132

    Article  PubMed  CAS  Google Scholar 

  42. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    PubMed  CAS  Google Scholar 

  43. Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA (2003) Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. Crit Rev Eukaryot Gene Expr 13:243–253

    Article  PubMed  CAS  Google Scholar 

  44. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  45. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  46. Ma YF, Li XJ, Jee WS, McOsker J, Liang XG, Setterberg R, Chow SY (1995) Effects of prostaglandin E2 and F on the skeleton of osteopenic ovariectomized rats. Bone 17:549–554

    Article  PubMed  CAS  Google Scholar 

  47. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  PubMed  CAS  Google Scholar 

  48. Nakano Y, Addison WN, Kaartinen MT (2007) ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone 41:549–561

    Article  PubMed  CAS  Google Scholar 

  49. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

    Article  PubMed  CAS  Google Scholar 

  50. Gabel CA (2007) P2 purinergic receptor modulation of cytokine production. Purinergic Signal 3:27–38

    Article  PubMed  CAS  Google Scholar 

  51. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X7 receptor: Death or life? Purinergic Signal 1:219–227

    Article  PubMed  CAS  Google Scholar 

  52. Gartland A, Ginty AF, Gallagher JA, Bowler WB (1999) Activation of P2X7 receptors expressed by human osteoclastoma modulates bone resorption. Calci Tissue Int 64:S56, abstract

    Google Scholar 

  53. Buckley KA, Hipskind RA, Gartland A, Bowler WB, Gallagher JA (2002) Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-κB ligand. Bone 31:582–590

    Article  PubMed  CAS  Google Scholar 

  54. Gartland A, Buckley KA, Bowler WB, Gallagher JA (2003) Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. Calcif Tissue Int 73:361–369

    Article  PubMed  CAS  Google Scholar 

  55. Penolazzi L, Bianchini E, Lambertini E, Baraldi PG, Romagnoli R, Piva R, Gambari R (2005) N-Arylpiperazine modified analogues of the P2X7 receptor KN-62 antagonist are potent inducers of apoptosis of human primary osteoclasts. J Biomed Sci 12:1013–1020

    Article  PubMed  CAS  Google Scholar 

  56. Naemsch LN, Dixon SJ, Sims SM (2001) Activity-dependent development of P2X7 current and Ca2+ entry in rabbit osteoclasts. J Biol Chem 276:39107–39114

    Article  PubMed  CAS  Google Scholar 

  57. Korcok J, Raimundo LN, Ke HZ, Sims SM, Dixon SJ (2004) Extracellular nucleotides act through P2X7 receptors to activate NF-κB in osteoclasts. J Bone Miner Res 19:642–651

    Article  PubMed  CAS  Google Scholar 

  58. Steinberg TH, Jørgensen NR, Bong JS, Henriksen Z, Atal N, Lin GC, Bennett BD, Eriksen EF, Sørensen OH, Civitelli R (2001) P2-mediated responses in osteoclasts and osteoclast-like cells. Drug Dev Res 53:126–129

    Article  CAS  Google Scholar 

  59. Hiken JF, Steinberg TH (2004) ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells. Am J Physiol Cell Physiol 287:C403–C412

    Article  PubMed  CAS  Google Scholar 

  60. Armstrong S, Pereverzev A, Dixon SJ, Sims SM (2009) Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts. J Cell Sci 122:136–144

    Article  PubMed  CAS  Google Scholar 

  61. Modderman WE, Weidema AF, Vrijheid-Lammers T, Wassenaar AM, Nijweide PJ (1994) Permeabilization of cells of hemopoietic origin by extracellular ATP4−: elimination of osteoclasts, macrophages, and their precursors from isolated bone cell populations and fetal bone rudiments. Calcif Tissue Int 55:141–150

    Article  PubMed  CAS  Google Scholar 

  62. Korcok J, Sims SM, Dixon SJ (2004) P2X7 nucleotide receptors act through two distinct mechanisms to regulate osteoclast survival. J Bone Miner Res 19(Suppl. 1):S418–S419, abstract

    Google Scholar 

  63. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  64. Sims SM, Kelly ME, Dixon SJ (1991) K+ and Cl currents in freshly isolated rat osteoclasts. Pflügers Arch 419:358–370

    Article  PubMed  CAS  Google Scholar 

  65. Weidema AF, Dixon SJ, Sims SM (2001) Activation of P2Y but not P2X4 nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts. Am J Physiol Cell Physiol 280:C1531–C1539

    PubMed  CAS  Google Scholar 

  66. Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 140:507–519

    Article  PubMed  CAS  Google Scholar 

  67. Di Virgilio F (2003) Novel data point to a broader mechanism of action of oxidized ATP: the P2X7 receptor is not the only target. Br J Pharmacol 140:441–443

    Article  PubMed  CAS  Google Scholar 

  68. Ferrari D, Stroh C, Schulze-Osthoff K (1999) P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 274:13205–13210

    Article  PubMed  CAS  Google Scholar 

  69. Gudipaty L, Munetz J, Verhoef PA, Dubyak GR (2003) Essential role for Ca2+ in regulation of IL-1β secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells. Am J Physiol Cell Physiol 285:C286–C299

    PubMed  CAS  Google Scholar 

  70. Pereverzev A, Komarova SV, Korcok J, Armstrong S, Tremblay GB, Dixon SJ, Sims SM (2008) Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone 42:150–161

    Article  PubMed  CAS  Google Scholar 

  71. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U (1997) Requirement for NF-κB in osteoclast and B-cell development. Genes Dev 11:3482–3496

    Article  PubMed  CAS  Google Scholar 

  72. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat Med 3:1285–1289

    Article  PubMed  CAS  Google Scholar 

  73. Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  74. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    Article  PubMed  CAS  Google Scholar 

  75. Armstrong S, Korcok J, Sims SM, Dixon SJ (2007) Activation of transcription factors by extracellular nucleotides in immune and related cell types. Purinergic Signal 3:59–69

    Article  PubMed  CAS  Google Scholar 

  76. Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegatti P, Adinolfi E, Chiozzi P, Di Virgilio F (2006) Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immunol 177:7257–7265

    PubMed  CAS  Google Scholar 

  77. Steinberg TH, Hiken JF (2007) P2 receptors in macrophage fusion and osteoclast formation. Purinergic Signal 3:53–57

    Article  PubMed  CAS  Google Scholar 

  78. Chiozzi P, Sanz JM, Ferrari D, Falzoni S, Aleotti A, Buell GN, Collo G, Di Virgilio F (1997) Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2X7 receptor. J Cell Biol 138:697–706

    Article  PubMed  CAS  Google Scholar 

  79. Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, Abrahamsen B, Hermann AP, Eiken P, Jorgensen NR (2007) Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics 17:555–567

    Article  PubMed  CAS  Google Scholar 

  80. Di Virgilio F, Wiley JS (2002) The P2X7 receptor of CLL lymphocytes—a molecule with a split personality. Lancet 360:1898–1899

    Article  PubMed  Google Scholar 

  81. Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, Cuneo A, Castoldi G, Baricordi OR, Di Virgilio F (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–89

    PubMed  CAS  Google Scholar 

  82. Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142

    Article  PubMed  CAS  Google Scholar 

  83. Dao-Ung LP, Gu BJ, Sluyter R, Shemon AN, Li C, Taper J, Gallo J, Manoharan A (2002) A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. Lancet 359:1114–1119

    Article  PubMed  CAS  Google Scholar 

  84. Sluyter R, Dalitz JG, Wiley JS (2004) P2X7 receptor polymorphism impairs extracellular adenosine 5′-triphosphate-induced interleukin-18 release from human monocytes. Genes Immun 5:588–591

    Article  PubMed  CAS  Google Scholar 

  85. Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1β release from human monocytes. J Immunol 172:3399–3405

    PubMed  CAS  Google Scholar 

  86. Le Stunff H, Auger R, Kanellopoulos J, Raymond MN (2004) The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279:16918–16926

    Article  PubMed  CAS  Google Scholar 

  87. Boldt W, Klapperstuck M, Buttner C, Sadtler S, Schmalzing G, Markwardt F (2003) Glu496Ala polymorphism of human P2X7 receptor does not affect its electrophysiological phenotype. Am J Physiol Cell Physiol 284:C749–C756

    PubMed  CAS  Google Scholar 

  88. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML, Fuller SJ, Barden JA, Petrou S, Sluyter R (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113

    Article  PubMed  CAS  Google Scholar 

  89. Gudipaty L, Humphreys BD, Buell G, Dubyak GR (2001) Regulation of P2X7 nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953

    PubMed  CAS  Google Scholar 

  90. Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukoc Biol 64:265–273

    PubMed  CAS  Google Scholar 

  91. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258

    Article  PubMed  Google Scholar 

  92. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    Article  PubMed  CAS  Google Scholar 

  93. Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL (2005) Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 20:41–49

    Article  PubMed  CAS  Google Scholar 

  94. Buckley KA, Golding SL, Rice JM, Dillon JP, Gallagher JA (2003) Release and interconversion of P2 receptor agonists by human osteoblast-like cells. FASEB J 17:1401–1410

    Article  PubMed  CAS  Google Scholar 

  95. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–582

    Article  PubMed  CAS  Google Scholar 

  96. Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH, Seman M, Haag F, Koch-Nolte F (2008) ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 22:861–869

    Article  PubMed  CAS  Google Scholar 

  97. Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  PubMed  CAS  Google Scholar 

  98. Dubyak GR (2007) Go it alone no more—P2X7 joins the society of heteromeric ATP-gated receptor channels. Mol Pharmacol 72:1402–1405

    Article  PubMed  CAS  Google Scholar 

  99. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456

    Article  PubMed  CAS  Google Scholar 

  100. Naemsch LN, Weidema AF, Sims SM, Underhill TM, Dixon SJ (1999) P2X4 purinoceptors mediate an ATP-activated, non-selective cation current in rabbit osteoclasts. J Cell Sci 112:4425–4435

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank investigators in this rapidly advancing field for permission to reproduce illustrative material from their previously published work. We thank Frank Beier, Graeme Hunter, Dale Laird and Danielle Lapierre for constructive comments on the manuscript. Studies from the authors’ laboratories that were reviewed in this chapter were supported by the Canadian Institutes of Health Research (CIHR). M. Grol is supported by a CIHR Canada Graduate Scholarship and J. Korcok by the CIHR Network for Oral Research Training and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jeffrey Dixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grol, M.W., Panupinthu, N., Korcok, J. et al. Expression, signaling, and function of P2X7 receptors in bone. Purinergic Signalling 5, 205–221 (2009). https://doi.org/10.1007/s11302-009-9139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9139-1

Keywords

Navigation