Skip to main content
Log in

Insight into Mechanisms of Cellular Uptake of Lipid Nanoparticles and Intracellular Release of Small RNAs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Understanding mechanisms of cellular uptake and intracellular release would enable better design of nanocarriers for delivery of nucleic acids such as siRNA and microRNA (miRNA).

Method

In this study, we investigated cellular pharmacokinetics of siRNA by co-encapsulating fluorescently labeled siRNA and molecular beacon (MB) in four different formulations of cationic lipid nanoparticles (LNPs). A miRNA mimic was also used as a probe for investigating cellular pharmacokinetics, which correlated well with RNAi activities.

Results

We tried to find the best LNP formulation based on the combination of DOTMA and DODMA. When the DOTMA/DODMA ratio was at 5/40, the LNP containing a luciferase siRNA produced the highest gene silencing activity. The superior potency of DOTMA/DODMA could be attributed to higher uptake and improved ability to facilitate siRNA release from endosomes subsequent to uptake.

Conclusions

Our findings may provide new insights into RNAi transfection pathways and have implications on cationic LNP design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  2. Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J. 2009;11:195–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.

    Article  PubMed  CAS  Google Scholar 

  5. Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107:1864–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–6.

    Article  PubMed  CAS  Google Scholar 

  7. Yu B, Hsu SH, Zhou C, et al. Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials. 2012;33:5924–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Wang X, Yu B, Ren W, Mo X, Zhou C, He H, et al. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. J Control Release. 2013;172:690–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lin PJ, Tam YY, Hafez I, et al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine. 2013;9:233–46.

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Yu B, Wu Y, Lee RJ, Lee LJ. Efficient down-regulation of CDK4 by novel lipid nanoparticle-mediated siRNA delivery. Anticancer Res. 2011;31:1619–26.

    PubMed  Google Scholar 

  11. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9:2380–402.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu CY, Uludag H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials. 2012;33:7834–48.

    Article  PubMed  CAS  Google Scholar 

  14. Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC. In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry. 2006;45:10614–23.

    Article  PubMed  CAS  Google Scholar 

  15. Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol Ther. 2008;16:324–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther. 2010;18:171–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jiang S, Zhang Y. Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir. 2010;26:6689–94.

    Article  PubMed  CAS  Google Scholar 

  18. Shi B, Keough E, Matter A, et al. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery. J Histochem Cytochem. 2011;59:727–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Alabi CA, Love KT, Sahay G, et al. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS Nano. 2012;6:6133–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hirsch M, Strand D, Helm M. Dye selection for live cell imaging of intact siRNA. Biol Chem. 2012;393:23–35.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou C, Zhang Y, Yu B, Phelps MA, Lee LJ, Lee RJ. Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes. Nanomedicine. 2013;9:504–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Jarve A, Muller J, Kim IH, et al. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Res. 2007;35:e124.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneider S, Lenz D, Holzer M, Palme K, Suss R. Intracellular FRET analysis of lipid/DNA complexes using flow cytometry and fluorescence imaging techniques. J Control Release. 2010;145:289–96.

    Article  PubMed  CAS  Google Scholar 

  24. Shaheen SM, Akita H, Yamashita A, et al. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET. Nucleic Acids Res. 2011;39:e48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Shin S, Kwon HM, Yoon KS, Kim DE, Hah SS. FRET-based probing to gain direct information on siRNA sustainability in live cells: Asymmetric degradation of siRNA strands. Mol Biosyst. 2011;7:2110–3.

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi Y, Noguchi Y, Harashima H. Non-linear pharmacokinetics of octaarginine-modified lipid nanoparticles: barriers from in vitro to in vivo. J Control Release. 2012;161:757–62.

    Article  PubMed  CAS  Google Scholar 

  27. Yang X, Koh CG, Liu S, et al. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm. 2009;6:221–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Hsu SH, Yu B, Wang X, et al. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine. 2013;9:1169–80.

    Article  PubMed  CAS  Google Scholar 

  29. Wu Y, Ho YP, Mao Y, et al. Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Forster resonance energy transfer. Mol Pharm. 2011;8:1662–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of miR-122 and c-Myc in hepatocellular cancer: Role of E2F1 and TFDP2. Hepatology. 2014;59:555–66.

    Article  PubMed  CAS  Google Scholar 

  31. Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hsu SH, Wang B, Kota J, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Whitehead KA, Sahay G, Li GZ, et al. Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol Ther. 2011;19:1688–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–9.

    Article  PubMed  CAS  Google Scholar 

  35. Stanton MG, Colletti SL. Medicinal chemistry of siRNA delivery. J Med Chem. 2010;53:7887–901.

    Article  PubMed  CAS  Google Scholar 

  36. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9:775–89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by NSF Nanoscale Science and Engineering Center (NSEC) grant EEC-0914790 and the Chinese National 863 Project (No. 2012AA020804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Lee, Suoqin Tang or L. James Lee.

Additional information

Bo Yu and Xinmei Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Wang, X., Zhou, C. et al. Insight into Mechanisms of Cellular Uptake of Lipid Nanoparticles and Intracellular Release of Small RNAs. Pharm Res 31, 2685–2695 (2014). https://doi.org/10.1007/s11095-014-1366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1366-7

KEY WORDS

Navigation