Skip to main content

Advertisement

Log in

Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

  2. Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21. doi:10.1002/ana.22425

    Article  PubMed  Google Scholar 

  3. Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66:5977–5980. doi:10.1158/0008-5472.CAN-05-4673

    Article  CAS  PubMed  Google Scholar 

  4. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777. doi:10.1038/nrc2222

    Article  CAS  PubMed  Google Scholar 

  5. Zhao W, Kridel S, Thorburn A, Kooshki M, Little J, Hebbar S, Robbins M (2006) Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 95:869–878. doi:10.1038/sj.bjc.6603350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, Lin KY, Huang TT, Akhavan D, Hock MB, Zhu S, Kofman AA, Bensinger SJ, Yong WH, Vinters HV, Horvath S, Watson AD, Kuhn JG, Robins HI, Mehta MP, Wen PY, DeAngelis LM, Prados MD, Mellinghoff IK, Cloughesy TF, Mischel PS (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2: ra82 doi:10.1126/scisignal.2000446

  7. Tao BB, He H, Shi XH, Wang CL, Li WQ, Li B, Dong Y, Hu GH, Hou LJ, Luo C, Chen JX, Chen HR, Yu YH, Sun QF, Lu YC (2013) Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20:717–720. doi:10.1016/j.jocn.2012.03.050

    Article  CAS  PubMed  Google Scholar 

  8. Maier T, Leibundgut M, Boehringer D, Ban N (2010) Structure and function of eukaryotic fatty acid synthases. Q Rev Biophys 43:373–422. doi:10.1017/S0033583510000156

    Article  CAS  PubMed  Google Scholar 

  9. Kusakabe T, Maeda M, Hoshi N, Sugino T, Watanabe K, Fukuda T, Suzuki T (2000) Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J Histochem Cytochem 48:613–622

    Article  CAS  PubMed  Google Scholar 

  10. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286. doi:10.1093/embo-reports/kve071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 101:1–9. doi:10.1172/JCI1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62:642–646

    PubMed  Google Scholar 

  13. Yang YA, Han WF, Morin PJ, Chrest FJ, Pizer ES (2002) Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp Cell Res 279:80–90

    Article  CAS  PubMed  Google Scholar 

  14. Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, Bubley G, Balk S, Loda M (2003) Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res 1:707–715

    CAS  PubMed  Google Scholar 

  15. Cerne D, Zitnik IP, Sok M (2010) Increased fatty acid synthase activity in non-small cell lung cancer tissue is a weaker predictor of shorter patient survival than increased lipoprotein lipase activity. Arch Med Res 41:405–409. doi:10.1016/j.arcmed.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Ogino S, Nosho K, Meyerhardt JA, Kirkner GJ, Chan AT, Kawasaki T, Giovannucci EL, Loda M, Fuchs CS (2008) Cohort study of fatty acid synthase expression and patient survival in colon cancer. J Clin Oncol 26:5713–5720. doi:10.1200/JCO.2008.18.2675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kusakabe T, Nashimoto A, Honma K, Suzuki T (2002) Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology 40:71–79

    Article  CAS  PubMed  Google Scholar 

  18. Jiang B, Li EH, Lu YY, Jiang Q, Cui D, Jing YF, Xia SJ (2012) Inhibition of fatty-acid synthase suppresses P-AKT and induces apoptosis in bladder cancer. Urology 80: 484 e489-415 doi:10.1016/j.urology.2012.02.046

  19. Makino K, Nakamura H, Hide T, Yano S, Kuroda J, Iyama K, Kuratsu J (2012) Fatty acid synthase is a predictive marker for aggressiveness in meningiomas. J Neurooncol 109:399–404. doi:10.1007/s11060-012-0907-3

    Article  CAS  PubMed  Google Scholar 

  20. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288:2379–2381

    Article  CAS  PubMed  Google Scholar 

  21. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  CAS  PubMed  Google Scholar 

  22. Westphal M, Nausch H, Zirkel D (1996) Cell culture of human brain tumors on extracellular matrices : methodology and biological applications. Methods Mol Med 2:81–99. doi:10.1385/0-89603-335-X:81

    CAS  PubMed  Google Scholar 

  23. Haase D, Schmidl S, Ewald C, Kalff R, Huebner C, Firsching R, Keilhoff G, Evert M, Paulus W, Gutmann DH, Lal A, Mawrin C (2010) Fatty acid synthase as a novel target for meningioma therapy. Neuro Oncol 12:844–854. doi:10.1093/neuonc/noq004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zecchin KG, Rossato FA, Raposo HF, Melo DR, Alberici LC, Oliveira HC, Castilho RF, Coletta RD, Vercesi AE, Graner E (2011) Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis. Lab Invest 91:232–240. doi:10.1038/labinvest.2010.157

    Article  CAS  PubMed  Google Scholar 

  26. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24:6465–6481. doi:10.1038/sj.onc.1208802

    CAS  PubMed  Google Scholar 

  27. Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24:3574–3582. doi:10.1038/sj.onc.1208463

    Article  CAS  PubMed  Google Scholar 

  28. Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77:474–482. doi:10.1002/(SICI)1097-0142(19960201)77:3<474:AID-CNCR8>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  29. Piyathilake CJ, Frost AR, Manne U, Bell WC, Weiss H, Heimburger DC, Grizzle WE (2000) The expression of fatty acid synthase (FASE) is an early event in the development and progression of squamous cell carcinoma of the lung. Hum Pathol 31:1068–1073. doi:10.1053/hupa.2000.9842

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Liu JY, Wu X, Zhang JT (2010) Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol 1:69–89

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Knowles LM, Yang C, Osterman A, Smith JW (2008) Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. J Biol Chem 283:31378–31384. doi:10.1074/jbc.M803384200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 97:3450–3454. doi:10.1073/pnas.050582897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Vance D, Goldberg I, Mitsuhashi O, Bloch K (1972) Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun 48:649–656

    Article  CAS  PubMed  Google Scholar 

  34. Lookene A, Skottova N, Olivecrona G (1994) Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat). Eur J Biochem 222:395–403

    Article  CAS  PubMed  Google Scholar 

  35. Browne CD, Hindmarsh EJ, Smith JW (2006) Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. Faseb J 20:2027–2035. doi:10.1096/fj.05-5404com

    Article  CAS  PubMed  Google Scholar 

  36. Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ (2007) Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 67:1262–1269. doi:10.1158/0008-5472.CAN-06-1794

    Article  CAS  PubMed  Google Scholar 

  37. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903

    Article  CAS  PubMed  Google Scholar 

  38. Grunt TW, Wagner R, Grusch M, Berger W, Singer CF, Marian B, Zielinski CC, Lupu R (2009) Interaction between fatty acid synthase- and ErbB-systems in ovarian cancer cells. Biochem Biophys Res Commun 385:454–459. doi:10.1016/j.bbrc.2009.05.085

    Article  CAS  PubMed  Google Scholar 

  39. Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26:756–784. doi:10.1101/gad.187922.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hill MM, Feng J, Hemmings BA (2002) Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12:1251–1255

    Article  CAS  PubMed  Google Scholar 

  41. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR (2002) Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62:2227–2231

    CAS  PubMed  Google Scholar 

  42. Kant S, Kumar A, Singh SM (2014) Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim Biophys Acta 1840:294–302. doi:10.1016/j.bbagen.2013.09.020

    Article  CAS  PubMed  Google Scholar 

  43. Paumen MB, Ishida Y, Han H, Muramatsu M, Eguchi Y, Tsujimoto Y, Honjo T (1997) Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem Biophys Res Commun 231:523–525. doi:10.1006/bbrc.1997.6089

    Article  CAS  PubMed  Google Scholar 

  44. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616. doi:10.1038/nrc1411

    Article  CAS  PubMed  Google Scholar 

  45. Knowles LM, Smith JW (2007) Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer. BMC Genom 8:168. doi:10.1186/1471-2164-8-168

    Article  Google Scholar 

  46. Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW (2011) Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer. Mol Cancer Res 9:1767–1779. doi:10.1158/1541-7786.MCR-10-0467

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Grube.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grube, S., Dünisch, P., Freitag, D. et al. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis. J Neurooncol 118, 277–287 (2014). https://doi.org/10.1007/s11060-014-1452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1452-z

Keywords

Navigation