Skip to main content

Advertisement

Log in

Pathological classification and molecular genetics of meningiomas

  • Invited Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningiomas are extremely common adult brain tumors originating from meningeal coverings of the brain and spinal cord. While most are slowly growing Word Health organization (WHO) grade I tumors, rare variants (clear cell, chordoid, papillary, and rhabdoid), as well as brain invasive (WHO grade II), atypical (WHO grade II), and anaplastic (WHO grade III) meningiomas are considerably more aggressive. This review summarizes the histopathological and genetic features of meningiomas, including differential diagnosis, pitfalls, and grading challenges. Early stages of meningioma tumorigenesis are closely linked to inactivation of one or more members of the 4.1 superfamily, including the neurofibromatosis type 2 (NF2) and 4.1B (DAL-1) genes, which interact with the 14-3-3 protein family. Other chromosome 22q genes implicated include BAM22, BCR (breakpoint cluster region), and TIMP-1, the last of which is implicated in higher-grade meningiomas. Atypical meningiomas also commonly show chromosomal losses of 1p, 6q, 10, 14q, and 18q, as well as multiple chromosomal gains. While most relevant genes remain unknown, two chromosome 14q candidates (MEG3 and NDRG2) have recently been identified. In addition to alterations of CDKN2A, p14 ARF, and CDKN2B tumor suppressor genes on 9p21, a contribution of the wingless (wnt) pathway with alterations of the E-cadherin and beta-catenin proteins, as well as alterations of the hedgehog signaling pathway have been implicated in anaplastic meningiomas. The integration of histopathological appearance, complex genetic/genomic data, and outcome will likely result in the identification of clinically distinct meningioma subgroups, which in turn can facilitate the development of targeted therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Central Brain Tumor Registry of the United States. Statistical report: primary brain tumors in the United States, 1997–2001. In: CBTRUS (ed). Hinsdale, IL

  2. Nakasu S, Hirano A, Shimura T, Llena JF (1987) Incidental meningiomas in autopsy study. Surg Neurol 27:319–322

    Article  CAS  PubMed  Google Scholar 

  3. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357:1821–1828

    Article  CAS  PubMed  Google Scholar 

  4. Perry A, Lusis EA, Gutmann DH (2005) Meningothelial hyperplasia: a detailed clinicopathologic, immunohistochemical and genetic study of 11 cases. Brain Pathol 15:109–115

    Article  PubMed  Google Scholar 

  5. Borovich B, Doron Y (1986) Recurrence of intracranial meningiomas: the role played by regional multicentricity. J Neurosurg 64:58–63

    Article  CAS  PubMed  Google Scholar 

  6. Stangl AP, Wellenreuther R, Lenartz D, Kraus JA, Menon AG, Schramm J, Wiestler OD, von Deimling A (1997) Clonality of multiple meningiomas. J Neurosurg 86:853–858

    Article  CAS  PubMed  Google Scholar 

  7. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1997) Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21:1455–1465

    Article  CAS  PubMed  Google Scholar 

  8. Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamarides M, Menei P, Deruty R, Moreau JJ, Fevre-Montange M, Guyotat J (2009) WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol 95:367–375

    Article  PubMed  Google Scholar 

  9. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85:2046–2056

    CAS  PubMed  Google Scholar 

  10. Aghi MK, Carter BS, Cosgrove GR, Ojemann RG, Amin-Hanjani S, Martuza RL, Curry WT Jr, Barker FG II (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60; discussion 60

    Google Scholar 

  11. Louis DN, Scheithauer BW, Budka H, Von Deimling A, Kepes JJ (2000) Meningiomas. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. IARC press, Lyon, pp 176–184

    Google Scholar 

  12. Smith SJ, Boddu S, Macarthur DC (2007) Atypical meningiomas: WHO moved the goalposts? Br J Neurosurg 21:588–592

    Google Scholar 

  13. Perry A, Louis DN, Scheithauer BW, Budka H, Von Deimling A (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. IARC press, Lyon, pp 164–172

    Google Scholar 

  14. Hirota S, Nakajima Y, Yoshimine T, Kohri K, Nomura S, Taneda M, Hayakawa T, Kitamura Y (1995) Expression of bone-related protein messenger RNA in human meningiomas: possible involvement of osteopontin in development of psammoma bodies. J Neuropathol Exp Neurol 54:698–703

    Article  CAS  PubMed  Google Scholar 

  15. Louis DN, Hamilton AJ, Sobel RA, Ojemann RG (1991) Pseudopsammomatous meningioma with elevated serum carcinoembryonic antigen: a true secretory meningioma. Case report. J Neurosurg 74:129–132

    Article  CAS  PubMed  Google Scholar 

  16. Kepes JJ, Chen WY, Connors MH, Vogel FS (1988) “Chordoid” meningeal tumors in young individuals with peritumoral lymphoplasmacellular infiltrates causing systemic manifestations of the Castleman syndrome. A report of seven cases. Cancer 62:391–406

    Article  CAS  PubMed  Google Scholar 

  17. Lin J-W, Ho J-T, Lin Y-J, Wu Y-T (2010) Chordoid meningioma: a clinicopathologic study of 11 cases at a single institution. J Neurooncol. doi:10.1007/s11060-010-0211-z

    Google Scholar 

  18. Couce ME, Aker FV, Scheithauer BW (2000) Chordoid meningioma: a clinicopathologic study of 42 cases. Am J Surg Pathol 24:899–905

    Article  CAS  PubMed  Google Scholar 

  19. Tena-Suck ML, Collado-Ortiz MA, Salinas-Lara C, Garcia-Lopez R, Gelista N, Rembao-Bojorquez D (2010) Chordoid meningioma: a report of ten cases. J Neurooncol 99(1):41–48

    Article  PubMed  Google Scholar 

  20. Perry A, Scheithauer BW, Stafford SL, Abell-Aleff PC, Meyer FB (1998) “Rhabdoid” meningioma: an aggressive variant. Am J Surg Pathol 22:1482–1490

    Article  CAS  PubMed  Google Scholar 

  21. Mawrin C, Hahne R, Scherlach C, Kirches E, Dietzmann K (2004) June 2004: a male in his late 60s with recurrent extracerebral tumor. Brain Pathol 14:457–459

    Article  PubMed  Google Scholar 

  22. Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, Sitruk-Ware R (2006) Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest 24:727–733

    Article  CAS  PubMed  Google Scholar 

  23. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1998) The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer 82:2262–2269

    Article  CAS  PubMed  Google Scholar 

  24. Nakasu S, Li DH, Okabe H, Nakajima M, Matsuda M (2001) Significance of MIB-1 staining indices in meningiomas: comparison of two counting methods. Am J Surg Pathol 25:472–478

    Article  CAS  PubMed  Google Scholar 

  25. Karamitopoulou E, Perentes E, Tolnay M, Probst A (1998) Prognostic significance of MIB-1, p53, and bcl-2 immunoreactivity in meningiomas. Hum Pathol 29:140–145

    Article  CAS  PubMed  Google Scholar 

  26. Nakasu S, Fukami T, Jito J, Nozaki K (2009) Recurrence and regrowth of benign meningiomas. Brain Tumor Pathol 26:69–72

    Article  PubMed  Google Scholar 

  27. Nakaya K, Chernov M, Kasuya H, Izawa M, Hayashi M, Kato K, Kubo O, Muragaki Y, Iseki H, Hori T, Okada Y, Takakura K (2009) Risk factors for regrowth of intracranial meningiomas after gamma knife radiosurgery: importance of the histopathological grade and MIB-1 index. Minim Invasive Neurosurg 52:216–221

    Article  CAS  PubMed  Google Scholar 

  28. Karja V, Sandell PJ, Kauppinen T, Alafuzoff I (2010) Does protein expression predict recurrence of benign World Health Organization grade I meningioma? Hum Pathol 41:199–207

    Article  PubMed  Google Scholar 

  29. Torp SH, Lindboe CF, Granli US, Moen TM, Nordtomme T (2001) Comparative investigation of proliferation markers and their prognostic relevance in human meningiomas. Clin Neuropathol 20:190–195

    CAS  PubMed  Google Scholar 

  30. Ribalta T, McCutcheon IE, Aldape KD, Bruner JM, Fuller GN (2004) The mitosis-specific antibody anti-phosphohistone-H3 (PHH3) facilitates rapid reliable grading of meningiomas according to WHO 2000 criteria. Am J Surg Pathol 28:1532–1536

    Article  PubMed  Google Scholar 

  31. Fukushima S, Terasaki M, Sakata K, Miyagi N, Kato S, Sugita Y, Shigemori M (2009) Sensitivity and usefulness of anti-phosphohistone-H3 antibody immunostaining for counting mitotic figures in meningioma cases. Brain Tumor Pathol 26:51–57

    Article  PubMed  Google Scholar 

  32. Perry A, Chicoine MR, Filiput E, Miller JP, Cross DT (2001) Clinicopathologic assessment and grading of embolized meningiomas: a correlative study of 64 patients. Cancer 92:701–711

    Article  CAS  PubMed  Google Scholar 

  33. Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241

    Article  CAS  PubMed  Google Scholar 

  34. Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26:461–469

    Article  CAS  PubMed  Google Scholar 

  35. Kheradmand A, Smith T: Dural metastatic adenocarcinoma mimicking meningioma. Neurology 74:1396

  36. Richiello A, Sparano L, Del Basso De Caro ML, Russo G (2003) Dural metastasis mimicking falx meningioma. Case report. J Neurosurg Sci 47:167–171; discussion 171

  37. Ambrosini-Spaltro A, Eusebi V (2010) Meningeal hemangiopericytomas and hemangiopericytoma/solitary fibrous tumors of extracranial soft tissues: a comparison. Virchows Arch 456:343–354

    Article  PubMed  Google Scholar 

  38. Mekni A, Kourda J, Hammouda KB, Tangour M, Kchir N, Zitouna M, Haouet S (2009) Solitary fibrous tumour of the central nervous system: pathological study of eight cases and review of the literature. Pathology 41:649–654

    Article  PubMed  Google Scholar 

  39. Psaras T, Pantazis G, Steger V, Meyermann R, Honegger J, Beschorner R (2009) Benign meningioma developing late lung metastases: case report and review of the literature. Clin Neuropathol 28:453–459

    CAS  PubMed  Google Scholar 

  40. Azene EM, Gai QW, Tabar SP, Morrison AL, Meisenberg B (2008) Metastasis of a histologically benign—appearing meningioma to the iliac bone. J Clin Oncol 26:4688–4690

    Article  PubMed  Google Scholar 

  41. Mahore A, Chagla A, Goel A (2010) Seeding metastases of a benign intraventricular meningioma along the surgical track. J Clin Neurosci 17:253–255

    Article  PubMed  Google Scholar 

  42. Albrecht S, Goodman JC, Rajagopolan S, Levy M, Cech DA, Cooley LD (1994) Malignant meningioma in Gorlin’s syndrome: cytogenetic and p53 gene analysis. Case report. J Neurosurg 81:466–471

    Article  CAS  PubMed  Google Scholar 

  43. Lindboe CF, Helseth E, Myhr G (1995) Lhermitte-Duclos disease and giant meningioma as manifestations of Cowden’s disease. Clin Neuropathol 14:327–330

    CAS  PubMed  Google Scholar 

  44. De Moura J, Kavalec FL, Doghman M, Rosati R, Custodio G, Lalli E, Cavallari GM, Santa Maria J, Figueiredo BC (2010) Heterozygous TP53stop146/R72P fibroblasts from a Li-Fraumeni syndrome patient with impaired response to DNA damage. Int J Oncol 36:983–990

    PubMed  Google Scholar 

  45. Marini F, Falchetti A, Del Monte F, Carbonell Sala S, Gozzini A, Luzi E, Brandi ML (2006) Multiple endocrine neoplasia type 1. Orphanet J Rare Dis 1:38

    Article  PubMed  Google Scholar 

  46. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP et al (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184

    Article  CAS  PubMed  Google Scholar 

  47. Lomas J, Bello MJ, Arjona D, Alonso ME, Martinez-Glez V, Lopez-Marin I, Aminoso C, de Campos JM, Isla A, Vaquero J, Rey JA (2005) Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 42:314–319

    Article  CAS  PubMed  Google Scholar 

  48. Kimura Y, Koga H, Araki N, Mugita N, Fujita N, Takeshima H, Nishi T, Yamashima T, Saido TC, Yamasaki T, Moritake K, Saya H, Nakao M (1998) The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med 4:915–922

    Article  CAS  PubMed  Google Scholar 

  49. Hansson CM, Buckley PG, Grigelioniene G, Piotrowski A, Hellstrom AR, Mantripragada K, Jarbo C, Mathiesen T, Dumanski JP (2007) Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics 8:16

    Article  PubMed  Google Scholar 

  50. Wellenreuther R, Kraus JA, Lenartz D, Menon AG, Schramm J, Louis DN, Ramesh V, Gusella JF, Wiestler OD, von Deimling A (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–832

    CAS  PubMed  Google Scholar 

  51. Hartmann C, Sieberns J, Gehlhaar C, Simon M, Paulus W, von Deimling A (2006) NF2 mutations in secretory and other rare variants of meningiomas. Brain Pathol 16:15–19

    Article  CAS  PubMed  Google Scholar 

  52. Kros J, de Greve K, van Tilborg A, Hop W, Pieterman H, Avezaat C, Lekanne Dit Deprez R, Zwarthoff E (2001) NF2 status of meningiomas is associated with tumour localization and histology. J Pathol 194:367–372

    Article  CAS  PubMed  Google Scholar 

  53. Peyrard M, Fransson I, Xie YG, Han FY, Ruttledge MH, Swahn S, Collins JE, Dunham I, Collins VP, Dumanski JP (1994) Characterization of a new member of the human beta-adaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum Mol Genet 3:1393–1399

    Article  CAS  PubMed  Google Scholar 

  54. Wozniak K, Piaskowski S, Gresner SM, Golanska E, Bieniek E, Bigoszewska K, Sikorska B, Szybka M, Kulczycka-Wojdala D, Zakrzewska M, Zawlik I, Papierz W, Stawski R, Jaskolski DJ, Och W, Sieruta M, Liberski PP, Rieske P (2008) BCR expression is decreased in meningiomas showing loss of heterozygosity of 22q within a new minimal deletion region. Cancer Genet Cytogenet 183:14–20

    Article  CAS  PubMed  Google Scholar 

  55. Barski D, Wolter M, Reifenberger G, Riemenschneider MJ (2010) Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol 20:623–631

    Article  CAS  PubMed  Google Scholar 

  56. Gutmann DH, Donahoe J, Perry A, Lemke N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9:1495–1500

    Article  CAS  PubMed  Google Scholar 

  57. Nunes F, Shen Y, Niida Y, Beauchamp R, Stemmer-Rachamimov AO, Ramesh V, Gusella J, MacCollin M (2005) Inactivation patterns of NF2 and DAL-1/4.1B (EPB41L3) in sporadic meningioma. Cancer Genet Cytogenet 162:135–139

    Article  CAS  PubMed  Google Scholar 

  58. Yi C, McCarty JH, Troutman SA, Eckman MS, Bronson RT, Kissil JL (2005) Loss of the putative tumor suppressor band 4.1B/Dal1 gene is dispensable for normal development and does not predispose to cancer. Mol Cell Biol 25:10052–10059

    Article  CAS  PubMed  Google Scholar 

  59. Heinrich B, Hartmann C, Stemmer-Rachamimov AO, Louis DN, MacCollin M (2003) Multiple meningiomas: Investigating the molecular basis of sporadic and familial forms. Int J Cancer 103:483–488

    Article  CAS  PubMed  Google Scholar 

  60. Robb VA, Li W, Gutmann DH (2004) Disruption of 14-3-3 binding does not impair Protein 4.1B growth suppression. Oncogene 23:3589–3596

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Tian RF, Li YM, Liu WP, Cao L, Yang XL, Cao WD, Zhang X (2010) The expression of seven 14-3-3 isoforms in human meningioma. Brain Res 1336:98–102

    Article  CAS  PubMed  Google Scholar 

  62. Surace EI, Lusis E, Murakami Y, Scheithauer BW, Perry A, Gutmann DH (2004) Loss of tumor suppressor in lung cancer-1 (TSLC1) expression in meningioma correlates with increased malignancy grade and reduced patient survival. J Neuropathol Exp Neurol 63:1015–1027

    CAS  PubMed  Google Scholar 

  63. van Tilborg AA, Morolli B, Giphart-Gassler M, de Vries A, van Geenen DA, Lurkin I, Kros JM, Zwarthoff EC (2006) Lack of genetic and epigenetic changes in meningiomas without NF2 loss. J Pathol 208:564–573

    Article  PubMed  Google Scholar 

  64. Carvalho LH, Smirnov I, Baia GS, Modrusan Z, Smith JS, Jun P, Costello JF, McDermott MW, Vandenberg SR, Lal A (2007) Molecular signatures define two main classes of meningiomas. Mol Cancer 6:64

    Article  PubMed  Google Scholar 

  65. Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg 101:210–218

    Article  PubMed  Google Scholar 

  66. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  CAS  PubMed  Google Scholar 

  67. Gabeau-Lacet D, Engler D, Gupta S, Scangas GA, Betensky RA, Barker FG II, Loeffler JS, Louis DN, Mohapatra G (2009) Genomic profiling of atypical meningiomas associates gain of 1q with poor clinical outcome. J Neuropathol Exp Neurol 68:1155–1165

    Article  CAS  PubMed  Google Scholar 

  68. Krupp W, Holland H, Koschny R, Bauer M, Schober R, Kirsten H, Livrea M, Meixensberger J, Ahnert P (2008) Genome-wide genetic characterization of an atypical meningioma by single-nucleotide polymorphism array-based mapping and classical cytogenetics. Cancer Genet Cytogenet 184:87–93

    Article  CAS  PubMed  Google Scholar 

  69. Pelz AF, Klawunde P, Skalej M, Wieacker P, Kirches E, Schneider T, Mawrin C (2007) Novel chromosomal aberrations in a recurrent malignant meningioma. Cancer Genet Cytogenet 174:48–53

    Article  CAS  PubMed  Google Scholar 

  70. Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifenberger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669

    CAS  PubMed  Google Scholar 

  71. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12:183–190

    CAS  PubMed  Google Scholar 

  72. Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218

    Article  CAS  PubMed  Google Scholar 

  73. Surace EI, Lusis E, Haipek CA, Gutmann DH (2004) Functional significance of S6K overexpression in meningioma progression. Ann Neurol 56:295–298

    Article  CAS  PubMed  Google Scholar 

  74. Martinez-Glez V, Alvarez L, Franco-Hernandez C, Torres-Martin M, de Campos JM, Isla A, Vaquero J, Lassaletta L, Castresana JS, Casartelli C, Rey JA (2010) Genomic deletions at 1p and 14q are associated with an abnormal cDNA microarray gene expression pattern in meningiomas but not in schwannomas. Cancer Genet Cytogenet 196:1–6

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358

    Article  CAS  PubMed  Google Scholar 

  76. Amatya VJ, Takeshima Y, Inai K (2004) Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation. Mod Pathol 17:705–710

    Article  CAS  PubMed  Google Scholar 

  77. Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A (2001) Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94:218–221

    Article  CAS  PubMed  Google Scholar 

  78. Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, Reifenberger G, Gutmann DH, Perry A (2005) Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 65:7121–7126

    Article  CAS  PubMed  Google Scholar 

  79. Liu Y, Pang JC, Dong S, Mao B, Poon WS, Ng HK (2005) Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum Pathol 36:416–425

    Article  CAS  PubMed  Google Scholar 

  80. Buckley PG, Jarbo C, Menzel U, Mathiesen T, Scott C, Gregory SG, Langford CF, Dumanski JP (2005) Comprehensive DNA copy number profiling of meningioma using a chromosome 1 tiling path microarray identifies novel candidate tumor suppressor loci. Cancer Res 65:2653–2661

    Article  CAS  PubMed  Google Scholar 

  81. Ruiz J, Martinez A, Hernandez S, Zimman H, Ferrer M, Fernandez C, Saez M, Lopez-Asenjo JA, Sanz-Ortega J (2010) Clinicopathological variables, immunophenotype, chromosome 1p36 loss and tumour recurrence of 247 meningiomas grade I and II. Histol Histopathol 25:341–349

    CAS  PubMed  Google Scholar 

  82. Piaskowski S, Rieske P, Szybka M, Wozniak K, Bednarek A, Pluciennik E, Jaskolski D, Sikorska B, Liberski PP (2005) GADD45A and EPB41 as tumor suppressor genes in meningioma pathogenesis. Cancer Genet Cytogenet 162:63–67

    Article  CAS  PubMed  Google Scholar 

  83. Pfisterer WK, Coons SW, Aboul-Enein F, Hendricks WP, Scheck AC, Preul MC (2008) Implicating chromosomal aberrations with meningioma growth and recurrence: results from FISH and MIB-I analysis of grades I and II meningioma tissue. J Neurooncol 87:43–50

    Article  PubMed  Google Scholar 

  84. Wrobel G, Roerig P, Kokocinski F, Neben K, Hahn M, Reifenberger G, Lichter P (2005) Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. IntJ Cancer 114:249–256

    Article  CAS  Google Scholar 

  85. Pecina-Slaus N, Nikuseva Martic T, Deak AJ, Zeljko M, Hrascan R, Tomas D, Musani V (2009) Genetic and protein changes of E-cadherin in meningiomas. J Cancer Res Clin Oncol 136:695–702

    Article  PubMed  Google Scholar 

  86. Zhou K, Wang G, Wang Y, Jin H, Yang S, Liu C (2010) The Potential Involvement of E-cadherin and beta-catenins in Meningioma. PLoS One 5:e11231

    Google Scholar 

  87. Schwechheimer K, Zhou L, Birchmeier W (1998) E-Cadherin in human brain tumours: loss of immunoreactivity in malignant meningiomas. Virchows Arch 432:163–167

    Article  CAS  PubMed  Google Scholar 

  88. Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 29:5923–5940

    Article  CAS  PubMed  Google Scholar 

  89. Pecina-Slaus N, Nikuseva Martic T, Tomas D, Beros V, Zeljko M, Cupic H (2008) Meningiomas exhibit loss of heterozygosity of the APC gene. J Neurooncol 87:63–70

    Article  CAS  PubMed  Google Scholar 

  90. Laurendeau I, Ferrer M, Garrido D, D’Haene N, Ciavarelli P, Basso A, Vidaud M, Bieche I, Salmon I, Szijan I (2010) Gene expression profiling of the Hedgehog signaling pathway in human meningiomas. Mol Med 2010:26

    Google Scholar 

  91. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG, Warren RS, Chen LC, Scott MP, Epstein EH Jr (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57:2369–2372

    CAS  PubMed  Google Scholar 

  92. Hankins GR, Sasaki T, Lieu AS, Saulle D, Karimi K, Li JZ, Helm GA (2008) Identification of the deleted in liver cancer 1 gene, DLC1, as a candidate meningioma tumor suppressor. Neurosurgery 63:771–780; discussion 780–771

    Google Scholar 

  93. Lee Y, Liu J, Patel S, Cloughesy T, Lai A, Farooqi H, Seligson D, Dong J, Liau L, Becker D, Mischel P, Shams S, Nelson S (2010) Genomic landscape of meningiomas. Brain Pathol 20:751–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Deutsche Krebshilfe, grant #108987 (to CM), and by the Wilhelm Sander Stiftung, grant #2010.017.1 (to CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mawrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mawrin, C., Perry, A. Pathological classification and molecular genetics of meningiomas. J Neurooncol 99, 379–391 (2010). https://doi.org/10.1007/s11060-010-0342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0342-2

Keywords

Navigation