Skip to main content

Advertisement

Log in

BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion

  • Lab. Investigation-human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Malignant gliomas are the most common and deadly primary brain tumors, due to their infiltrative invasion of the normal neural tissue that makes them virtually impossible to completely eliminate. We have previously identified and characterized the proteoglycan BEHAB/brevican in gliomas and have demonstrated that upregulation and cleavage of this CNS-specific molecule promote glioma invasion. Here, we have further investigated if the proteolytic processing of BEHAB/brevican by metalloproteases of the ADAMTS family is a necessary step in mediating its pro-invasive effect in glioma. By generating a site-specific (396SRG398 → NVY) mutant form resistant to ADAMTS cleavage, we have shown that the predominant proteolytic processing of BEHAB/brevican by glioma cells occurs only at this site. More importantly, “uncleavable” BEHAB/brevican is unable to enhance glioma cell invasion in vitro and tumor progression in vivo. In addition, our results suggest that the full-length protein and its cleavage products may act independently because the mutant form does not exert a dominant negative effect on normal BEHAB/brevican expression or cleavage. These results illustrate how the regulated processing of major components of the neural extracellular matrix has important functional implications in glioma progression. In addition, our findings underscore the relevance of the ADAMTS family of metalloproteases as attractive targets for novel pharmacological approaches in glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolteus AJ, Berens ME, Pilkington GJ (2001) Migration and invasion in brain neoplasms. Curr Neurol Neurosci Rep 1(3):225–232

    Article  PubMed  CAS  Google Scholar 

  2. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23(10):2411–2422

    Article  PubMed  CAS  Google Scholar 

  3. Giese A, Bjerkvig R, Berens ME et al (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21(8):1624–1636

    Article  PubMed  CAS  Google Scholar 

  4. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol Mech Dis 1:97–117

    Article  CAS  Google Scholar 

  5. Pilkington GJ (1997) The paradox of neoplastic glial cell invasion of the brain and apparent metastatic failure. Anticancer Res 17(6B):4103–4105

    PubMed  CAS  Google Scholar 

  6. Subramanian A, Harris A, Piggott K et al (2002) Metastasis to and from the central nervous system – the ‘relatively protected site’. Lancet Oncol 3(8):498–507

    Article  PubMed  CAS  Google Scholar 

  7. Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7(4):280–290

    Article  PubMed  CAS  Google Scholar 

  8. Gladson CL (1999) The extracellular matrix of gliomas: modulation of cell function. J Neuropathol Exp Neurol 58(10):1029–1040

    Article  PubMed  CAS  Google Scholar 

  9. Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069

    Article  PubMed  CAS  Google Scholar 

  10. Goldbrunner RH, Bernstein JJ, Tonn JC (1999) Cell–extracellular matrix interaction in glioma invasion. Acta Neurochir (Wien) 141(3):295–305

    Article  CAS  Google Scholar 

  11. Binder DK, Berger MS (2002) Proteases and the biology of glioma invasion. J Neurooncol 56(2):149–158

    Article  PubMed  Google Scholar 

  12. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    Article  PubMed  CAS  Google Scholar 

  13. Novak U, Stylli SS, Kaye AH et al (1999) Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Res 59(24):6246–6250

    PubMed  CAS  Google Scholar 

  14. Bjerkvig R, Lund-Johansen M, Edvardsen K (1997) Tumor cell invasion and angiogenesis in the central nervous system. Curr Opin Oncol 9(3):223–229

    Article  PubMed  CAS  Google Scholar 

  15. Bello L, Giussani C, Carrabba G et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    PubMed  CAS  Google Scholar 

  16. VanMeter TE, Rooprai HK, Kibble MM et al (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53(2):213–235

    Article  PubMed  CAS  Google Scholar 

  17. Nakada M, Okada Y, Yamashita J (2003) The role of matrix metalloproteinases in glioma invasion. Front Biosci 8:e261–e269

    Article  PubMed  CAS  Google Scholar 

  18. Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17(6B):4151–4162

    PubMed  CAS  Google Scholar 

  19. Levicar N, Nuttall RK, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838

    Article  CAS  Google Scholar 

  20. Tsatas D, Kaye AH (2003) The role of the plasminogen activation cascade in glioma cell invasion: a review. J Clin Neurosci 10(2):139–145

    Article  PubMed  CAS  Google Scholar 

  21. VanMeter TE, Rooprai HK, Kibble MM et al (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53(2):213–235

    Article  PubMed  CAS  Google Scholar 

  22. Levicar N, Nuttall RK, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838

    Article  CAS  Google Scholar 

  23. Rooprai HK, Kandanearatchi A, Maidment SL et al (2001) Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol Appl Neurobiol 27(1):29–39

    Article  PubMed  CAS  Google Scholar 

  24. Rooprai HK, Kandanearatachi A, Rucklidge G et al (1999) Influence of putative antiinvasive agents on matrix metalloproteinase secretion by human neoplastic glia in vitro. Ann NY Acad Sci 878:654–657

    Article  PubMed  CAS  Google Scholar 

  25. Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80(5):764–772

    Article  PubMed  CAS  Google Scholar 

  26. Price A, Shi Q, Morris D et al (1999) Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res 5(4):845–854

    PubMed  CAS  Google Scholar 

  27. Watanabe K, Yoshida D, Noha M et al (2001) Suppression of matrix metalloproteinase-2 and -9 mediated invasiveness by a novel matrix metalloproteinase inhibitor, BE16627B. J Neurooncol 52(1):1–9

    Article  PubMed  CAS  Google Scholar 

  28. Folgueras AR, Pendas AM, Sanchez LM et al (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48(5–6):411–424

    Article  PubMed  CAS  Google Scholar 

  29. Heath EI, Grochow LB (2000) Clinical potential of matrix metalloprotease inhibitors in cancer therapy. Drugs 59(5):1043–1055

    Article  PubMed  CAS  Google Scholar 

  30. Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 9(12):2913–2922

    Article  PubMed  CAS  Google Scholar 

  31. Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57(2):276–289

    Article  PubMed  CAS  Google Scholar 

  32. Viapiano MS, Matthews RT (2006) From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med 12(10):488–496

    Article  PubMed  CAS  Google Scholar 

  33. Jaworski DM, Kelly GM, Piepmeier JM et al (1996) BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res 56(10):2293–2298

    PubMed  CAS  Google Scholar 

  34. Zhang H, Kelly G, Zerillo C et al (1998) Expression of a cleaved brain-specific extracellular matrix protein mediates glioma cell invasion in vivo. J Neurosci 18(7):2370–2376

    PubMed  CAS  Google Scholar 

  35. Nutt CL, Zerillo CA, Kelly GM et al (2001) Brain enriched hyaluronan binding (BEHAB)/brevican increases aggressiveness of CNS-1 gliomas in Lewis rats. Cancer Res 61(19):7056–7059

    PubMed  CAS  Google Scholar 

  36. Matthews RT, Gary SC, Zerillo C et al (2000) Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 275(30):22695–22703

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura H, Fujii Y, Inoki I et al (2000) Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 275(49):38885–38890

    Article  PubMed  CAS  Google Scholar 

  38. Viapiano MS, Matthews RT, Hockfield S (2003) A novel membrane-associated glycovariant of BEHAB/Brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem 278(35):33239–33247

    Article  PubMed  CAS  Google Scholar 

  39. Viapiano MS, Bi WL, Piepmeier J et al (2005) Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res 65(15):6726–6733

    Article  PubMed  CAS  Google Scholar 

  40. Kruse CA, Molleston MC, Parks EP et al (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22(3):191–200

    Article  PubMed  CAS  Google Scholar 

  41. Yamada H, Watanabe K, Shimonaka M et al (1994) Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 269(13):10119–10126

    PubMed  CAS  Google Scholar 

  42. Ohnishi T, Matsumura H, Izumoto S et al (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58(14):2935–2940

    PubMed  CAS  Google Scholar 

  43. Rosen GD, Harry JD (1990) Brain volume estimation from serial section measurements: a comparison of methodologies. J Neurosci Methods 35(2):115–124

    Article  PubMed  CAS  Google Scholar 

  44. Mercuri FA, Maciewicz RA, Tart J et al (2000) Mutations in the interglobular domain of aggrecan alter matrix metalloproteinase and aggrecanase cleavage patterns. Evidence that matrix metalloproteinase cleavage interferes with aggrecanase activity. J Biol Chem 275(42):33038–33045

    Article  PubMed  CAS  Google Scholar 

  45. Candolfi M, Curtin JF, Nichols WS et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148

    Article  PubMed  Google Scholar 

  46. Boon K, Edwards JB, Eberhart CG et al (2004) Identification of astrocytoma associated genes including cell surface markers. BMC Cancer 4(1):39

    Article  PubMed  CAS  Google Scholar 

  47. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  PubMed  CAS  Google Scholar 

  48. Liang Y, Diehn M, Watson N et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA 102(16):5814–5819

    Article  PubMed  CAS  Google Scholar 

  49. Muir EM, Adcock KH, Morgenstern DA et al (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res 100(1–2):103–117

    Article  PubMed  CAS  Google Scholar 

  50. Vihinen P, Ala-aho R, Kahari VM (2005) Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 5(3):203–220

    Article  PubMed  CAS  Google Scholar 

  51. Held-Feindt J, Paredes EB, Blomer U et al (2006) Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 118(1):55–61

    Article  PubMed  CAS  Google Scholar 

  52. Nakada M, Miyamori H, Kita D et al (2005) Human glioblastomas overexpress ADAMTS-5 that degrades brevican. Acta Neuropathol (Berl) 110(3):239–246

    Article  CAS  Google Scholar 

  53. Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2(3):322–329

    Article  PubMed  CAS  Google Scholar 

  54. Westling J, Gottschall PE, Thompson VP et al (2004) ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein. Biochem J 377(Pt 3):787–795

    PubMed  CAS  Google Scholar 

  55. Kashiwagi M, Enghild JJ, Gendron C et al (2004) Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem 279(11):10109–10119

    Article  PubMed  CAS  Google Scholar 

  56. Tortorella MD, Arner EC, Hills R et al (2004) Alpha2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J Biol Chem 279(17):17554–17561

    Article  PubMed  CAS  Google Scholar 

  57. Melching LI, Fisher WD, Lee ER et al (2006) The cleavage of biglycan by aggrecanases. Osteoarthr Cartil 14(11):1147–1154

    Article  PubMed  CAS  Google Scholar 

  58. Porter S, Clark IM, Kevorkian L et al (2005) The ADAMTS metalloproteinases. Biochem J 386(Pt 1):15–27

    PubMed  CAS  Google Scholar 

  59. Cal S, Obaya AJ, Llamazares M et al (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283(1–2):49–62

    Article  PubMed  CAS  Google Scholar 

  60. Georgiadis KE, Hirohata S, Seldin MF et al (1999) ADAM-TS8, a novel metalloprotease of the ADAM-TS family located on mouse chromosome 9 and human chromosome 11. Genomics 62(2):312–315

    Article  PubMed  CAS  Google Scholar 

  61. Somerville RP, Longpre JM, Jungers KA et al (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278(11):9503–9513

    Article  PubMed  CAS  Google Scholar 

  62. Jungers KA, Le GC, Somerville RP et al (2005) Adamts9 is widely expressed during mouse embryo development. Gene Expr Patterns 5(5):609–617

    Article  PubMed  CAS  Google Scholar 

  63. Dunn JR, Reed JE, du Plessis DG et al (2006) Expression of ADAMTS-8, a secreted protease with antiangiogenic properties, is downregulated in brain tumours. Br J Cancer 94(8):1186–1193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from NIH (R01NS035228) and the Accelerate Brain Cancer Cure foundation (to RTM), and by a fellowship from the Butler Family Foundation/American Brain Tumor Association (to MSV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Thomas Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viapiano, M.S., Hockfield, S. & Matthews, R.T. BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 88, 261–272 (2008). https://doi.org/10.1007/s11060-008-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9575-8

Keywords

Navigation