Skip to main content

Advertisement

Log in

Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53

  • Original Paper
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The Wilms’ tumor 1 (WT1) gene is overexpressed in human glioblastoma and correlates with wild-type p53 status. In other cell types, WT1 inhibits p53-mediated apoptosis in response to DNA damaging agents. However, neither this interaction nor the relationship between WT1 and radiosensitivity has been studied in glioblastoma. To study this interaction, we generated LN-229 glioma cell lines (p53 mutant) stably expressing WT1 isoforms and induced apoptosis by transfecting with different doses of wild-type p53 plasmid expression vector. Constitutive expression of WT1 did not protect against exogenous p53-mediated apoptosis. Likewise, WT1 expression did not protect against endogenous p53-mediated cell death induced by radiotherapy in U87MG cells, which contain functional wild-type p53. We then tested the efficacy of WT1 siRNA in inhibiting WT1 expression and its effect on radiosensitivity. In T98G and LN-18 glioma cells, which possess p53 mutations, WT1 siRNA decreased WT1 protein to almost undetectable levels by 96-h post-transfection. Furthermore, WT1 siRNA transfection caused a significantly larger decrease in viability following irradiation than was seen in untransfected cells in both cell lines after treatment with ED50 of ionizing radiation. In conclusion, WT1 overexpression did not protect against p53-mediated apoptosis or ionizing radiation induced cell death. WT1 siRNA increased the radiosensitivity of two human glioma cell lines independently of p53. Anti-WT1 strategies may, therefore, prove useful in improving the response of glioblastoma to radiotherapy, thus potentially improving patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

WT1:

Wilms’ tumor 1

siRNA:

Short interfering RNA

References

  1. CBTRUS (2006) Statistical report: primary brain tumors in the United States, 1998–2002

  2. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    PubMed  CAS  Google Scholar 

  3. Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26:239–244

    PubMed  CAS  Google Scholar 

  4. Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343

    PubMed  CAS  Google Scholar 

  5. Haas-Kogan DA, Kogan SS, Yount G et al (1999) p53 function influences the effect of fractionated radiotherapy on glioblastoma tumors. Int J Radiat Oncol Biol Phys 43:399–403

    Article  PubMed  CAS  Google Scholar 

  6. Chakravarti A, Dicker A, Mehta M (2004) The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys 58:927–931

    Article  PubMed  CAS  Google Scholar 

  7. Clark AJ, Dos Santos WG, McCready J et al (2007) Wilms’ tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 status. J Neurosurg (in press)

  8. Menssen HD, Bertelmann E, Bartelt S et al (2000) Wilms’ tumor gene (WT1) expression in lung cancer, colon cancer and glioblastoma cell lines compared to freshly isolated tumor specimens. J Cancer Res Clin Oncol 126:226–232

    Article  PubMed  CAS  Google Scholar 

  9. Dennis SL, Manji SSM, Carrington DP et al (2002) Expression and mutation analysis of the Wilms’ tumor 1 gene in human neural tumors. Int J Cancer 97:713–715

    Article  PubMed  CAS  Google Scholar 

  10. Nakahara Y, Okamoto H, Mineta T et al (2004) Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol 21:113–116

    Article  PubMed  CAS  Google Scholar 

  11. Oji Y, Suzuki T, Nakano Y et al (2004) Overexpression of the Wilms’ tumor gene W T1 in primary astrocytic tumors. Cancer Sci 95:822–827

    Article  PubMed  CAS  Google Scholar 

  12. Call KM, Glaser T, Ito CY et al (1990) Isolation and Characterization of A Zinc Finger Polypeptide Gene at the Human Chromosome-11 Wilms Tumor Locus. Cell 60:509–520

    Article  PubMed  CAS  Google Scholar 

  13. Haber DA, Sohn RL, Buckler AJ et al (1991) Alternative Splicing and Genomic Structure of the Wilms-Tumor Gene-Wt1. Proc Natl Acad Sci USA 88:9618–9622

    Article  PubMed  CAS  Google Scholar 

  14. Davies RC, Calvio C, Bratt E et al (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12:3217–3225

    PubMed  CAS  Google Scholar 

  15. Hewitt SM, Fraizer GC, Wu YJ et al (1996) Differential function of Wilms’ tumor gene WT1 splice isoforms in transcriptional regulation. J Biol Chem 271:8588–8592

    Article  PubMed  CAS  Google Scholar 

  16. Richard DJ, Schumacher V, Royer-Pokora B et al (2001) Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes Dev 15:328–339

    Article  PubMed  CAS  Google Scholar 

  17. Inoue K, Sugiyama H, Ogawa H et al (1994) Wt1 As A New Prognostic Factor and A New Marker for the Detection of Minimal Residual Disease in Acute-Leukemia. Blood 84:3071–3079

    PubMed  CAS  Google Scholar 

  18. Miyoshi Y, Ando A, Egawa C et al (2002) High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 8:1167–1171

    PubMed  CAS  Google Scholar 

  19. Svedberg H, Chylicki K, Baldetorp B et al (1998) Constitutive expression of the Wilms’ tumor gene (WT1) in the leukemic cell line U937 blocks parts of the differentiation program. Oncogene 16:925–932

    Article  PubMed  CAS  Google Scholar 

  20. Zapata-Benavides P, Tuna M, Lopez-Berestein G et al (2002) Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 295:784–790

    Article  PubMed  CAS  Google Scholar 

  21. Bogler O, Huang HJS, Kleihues P et al (1995) The P53 Gene and Its Role in Human Brain-Tumors. Glia 15:308–327

    Article  PubMed  CAS  Google Scholar 

  22. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  23. Lowe SW, Ruley HE, Jacks T et al (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  24. Barker FG, Simmons ML, Chang SM et al (2001) EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 51:410–418

    Article  PubMed  CAS  Google Scholar 

  25. Tada M, Matsumoto R, Iggo RD et al (1998) Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res 58:1793–1797

    PubMed  CAS  Google Scholar 

  26. Alsner J, Sorensen SB, Overgaard J (2001) TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother Oncol 59:179–185

    Article  PubMed  CAS  Google Scholar 

  27. Yount GL, Haas-Kogan DA, Vidair CA et al (1996) Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res 56:500–506

    PubMed  CAS  Google Scholar 

  28. Broaddus WC, Liu Y, Steele LL et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91:997–1004

    Article  PubMed  CAS  Google Scholar 

  29. Badie B, Kramar MH, Lau R et al (1998) Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J Neurooncol 37:217–222

    Article  PubMed  CAS  Google Scholar 

  30. Gjerset RA, Turla ST, Sobol RE et al (1995) Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Mol Carcinog 14:275–285

    Article  PubMed  CAS  Google Scholar 

  31. D’Avenia P, Porrello A, Berardo M et al (2006) Tp53-gene transfer induces hypersensitivity to low doses of X-rays in glioblastoma cells: a strategy to convert a radio-resistant phenotype into a radiosensitive one. Cancer Lett 231:102–112

    Article  PubMed  CAS  Google Scholar 

  32. Schiebe M, Ohneseit P, Hoffmann W et al (2000) Analysis of mdm2 and p53 gene alterations in glioblastomas and its correlation with clinical factors. J Neurooncol 49:197–203

    Article  PubMed  CAS  Google Scholar 

  33. Maheswaran S, Englert C, Bennett P et al (1995) The Wt1 Gene-Product Stabilizes P53 and Inhibits P53-Mediated Apoptosis. Genes Dev 9:2143–2156

    Article  PubMed  CAS  Google Scholar 

  34. Ishii N, Maier D, Merlo A et al (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  PubMed  CAS  Google Scholar 

  35. Idelman G, Glaser T, Roberts CT et al (2003) WT1-p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 278:3474–3482

    Article  PubMed  CAS  Google Scholar 

  36. Deb S, Jackson CT, Subler MA et al (1992) Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66:6164–6170

    PubMed  CAS  Google Scholar 

  37. Anker L, Ohgaki H, Ludeke BI et al (1993) p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer 55:982–987

    Article  PubMed  CAS  Google Scholar 

  38. Wang X, Ohnishi K, Takahashi A et al (1998) Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene 17:2819–2825

    Article  PubMed  CAS  Google Scholar 

  39. Englert C, Hou X, Maheswaran S et al (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675

    PubMed  CAS  Google Scholar 

  40. Mayo MW, Wang CY, Drouin SS et al (1999) WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18:3990–4003

    Article  PubMed  CAS  Google Scholar 

  41. Englert C, Maheswaran S, Garvin AJ et al (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 57:1429–1434

    PubMed  CAS  Google Scholar 

  42. Crighton D, Wilkinson S, O’Prey J et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    Article  PubMed  CAS  Google Scholar 

  43. Ito K, Oji Y, Tatsumi N et al (2006) Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 25:4217–4229

    Article  PubMed  CAS  Google Scholar 

  44. Liu XW, Gong LJ, Guo LY et al (2001) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 276:5068–5073

    Article  PubMed  CAS  Google Scholar 

  45. Wang ZY, Qiu QQ, Deuel TF (1993) The Wilms’ tumor gene product WT1 activates or suppresses transcription through separate functional domains. J Biol Chem 268:9172–9175

    PubMed  CAS  Google Scholar 

  46. Holdhoff M, Kreuzer KA, Appelt C et al (2005) Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells Mol Dis 34:181–185

    Article  PubMed  CAS  Google Scholar 

  47. Scharnhorst V, van der Eb AJ, Jochemsen AG (2001) WT1 proteins: functions in growth and differentiation. Gene 273:141–161

    Article  PubMed  CAS  Google Scholar 

  48. Scharnhorst V, Dekker P, van der Eb AJ et al (2000) Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 275:10202–10211

    Article  PubMed  CAS  Google Scholar 

  49. Yuan ZM, Shioya H, Ishiko T et al (1999) p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399:814–817

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki Y, Morimoto I, Ishida S et al (2001) Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Ther 8:1401–1408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jessica McCready for critically reading the manuscript. We also thank Dr. Charles T. Roberts, Jr. and Dr. Sumitra Deb for generously providing WT1 and p53 plasmids. The research presented in this paper was supported in part by a Medical Student Summer Fellowship from the American Brain Tumor Association and by the Hord and Cullather funds of the MCV Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Broaddus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, A.J., Chan, D.C., Chen, M.Y. et al. Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53. J Neurooncol 83, 163–172 (2007). https://doi.org/10.1007/s11060-006-9317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9317-8

Keywords

Navigation