Skip to main content

Advertisement

Log in

The involvement of c-Myc in the DNA double-strand break repair via regulating radiation-induced phosphorylation of ATM and DNA-PKcs activity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Deregulation of c-Myc often occurs in various human cancers, which not only contributes to the genesis and progression of cancers but also affects the outcomes of cancer radio- or chemotherapy. In this study, we have investigated the function of c-Myc in the repair of DNA double-strand break (DSB) induced by γ-ray irradiation. A c-Myc-silenced Hela-630 cell line was generated from HeLa cells using RNA interference technology. The DNA DSBs were detected by γ-H2AX foci, neutral comet assay and pulsed-field gel electrophoresis. We found that the capability of DNA DSB repair in Hela-630 cells was significantly reduced, and the repair kinetics of DSB was delayed as compared to the control Hela-NC cells. Silence of c-myc sensitized the cellular sensitivity to ionizing radiation. The phosphorylated c-Myc (Thr58/pSer62) formed the consistent co-localisation foci with γ-H2AX as well as the phosphorylated DNA-PKcs/S2056 in the irradiated cells. Moreover, depression of c-Myc largely attenuated the ionizing radiation-induced phosphorylation of the ataxia telangiectasia mutated (ATM) and decreased the in vitro kinase activity of DNA-PKcs. Taken together, our results demonstrated that c-Myc protein functions in the process of DNA double-strand break repair, at least partially, through affecting the ATM phosphorylation and DNA-PKcs kinase activity. The overexpression of c-Myc in tumours can account for the radioresistance of some tumour cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wang WJ, Wu SP, Liu JB, Shi YH, Huang X, Zhang QB, Yao KT (2013) MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res 73:1219–1231

    Article  CAS  PubMed  Google Scholar 

  3. Chiang CS, Sawyers CL, Mcbride WH (1998) Oncogene Expression and Cellular Radiation Resistance: a Modulatory Role for c-myc. Mol Diagn 3:21–27

    Article  CAS  PubMed  Google Scholar 

  4. Kim BY, Kwak SY, Yang JS, Han YH (2011) Phosphorylation and stabilization of c-Myc by NEMO renders cells resistant to ionizing radiation through up-regulation of γ-GCS. Oncol Rep 26:1587–1593

    CAS  PubMed  Google Scholar 

  5. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Kappas C, Kitsiou-Tzeli S, Tsezou A (2011) Survivin regulation by HER2 through NF-κB and c-myc in irradiated breast cancer cells. J Cell Mol Med 15:1542–1550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jung J, Kim EJ, Chung HK, Park HJ, Jeong SY, Choi EK (2012) c-Myc down-regulation is involved in proteasome inhibitor-mediated enhancement of radiotherapeutic efficacy in non-small cell lung cancer. Int J Oncol 40:385–390

    CAS  PubMed  Google Scholar 

  7. Larsson LG, Henriksson MA (2010) The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 316:1429–1437

    Article  CAS  PubMed  Google Scholar 

  8. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044

    Article  CAS  PubMed  Google Scholar 

  9. Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA, Felsher DW (2006) MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 66:6598–6605

    Article  CAS  PubMed  Google Scholar 

  10. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  CAS  PubMed  Google Scholar 

  11. Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K, McArthur MJ, Wong PK, Johnson DG (2006) ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 103:1446–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li Y, Challagundla KB, Sun X, Zhang Q, Dai M (2014) MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget 6:1101–1114

    PubMed Central  Google Scholar 

  13. von Bueren AO, Oehler C, Shalaby T, von Hoff K, Pruschy M, Seifert B, Gerber NU, Warmuth-Metz M, Stearns D, Eberhart CG, Kortmann RD, Rutkowski S, Grotzer MA (2011) c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients. BMC Cancer 11:74. doi:10.1186/1471-2407-11-74

    Article  Google Scholar 

  14. Valovka T, Schönfeld M, Raffeiner P, Breuker K, Dunzendorfer-Matt T, Hartl M, Bister K (2013) Transcriptional control of DNA replication licensing by Myc. Sci Rep 3:3444. doi:10.1038/srep03444

    Article  PubMed Central  PubMed  Google Scholar 

  15. Campaner S, Amati B (2012) Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance. Cell Div 7:6. doi:10.1186/1747-1028-7-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  17. Sheen JH, Dickson RB (2002) Overexpression of c-Myc alters G1-S arrest following ionizing radiation. Mol Cell Biol 22:1819–1833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Adachi S, Obaya AJ, Han Z, Ramos-Desimone N, Wyche JH, Sedivy JM (2001) c-Myc Is Necessary for DNA Damage-Induced Apoptosis in the G2 Phase of the Cell Cycle. Mol Cell Biol 21:4929–4937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Guerra L, Albihn A, Tronnersjö S, Yan Q, Guidi R, Stenerlöw B, Sterzenbach T, Josenhans C, Fox JG, Schauer DB, Thelestam M, Larsson LG, Henriksson M, Frisan T (2010) Myc is required for activation of the ATM-Dependent checkpoints in response to DNA damage. PLoS One 5:e8924. doi:10.1371/journal.pone.0008924

    Article  PubMed Central  PubMed  Google Scholar 

  20. An J, Xu QZ, Sui JL, Bai B, Zhou PK (2005) Downregulation of c-myc protein by siRNA-mediated silencing of DNA-PKcs in HeLa cells. Int J Cancer 117:531–537

    Article  CAS  PubMed  Google Scholar 

  21. An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Wang Y, Wu DC, Zhou PK (2008) DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer 7:32–44

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lieber MR, Ma Y, Pannicke U, Schwarz K (2004) The mechanism of vertebrate non-homologous DNA end joining and its role in V(D)J recombination. DNA Rep 3:817–826

    Article  CAS  Google Scholar 

  23. Downs Jessica A, Nussenzweig Michel C, Nussenzweig André (2007) Chromatin dynamics and the preservation of genetic information. Nature 447:951–958

    Article  CAS  PubMed  Google Scholar 

  24. Chiang YC, Teng SC, Su YN, Hsieh FJ, Wu KJ (2003) c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair. J Biol Chem 278:19286–19291

    Article  CAS  PubMed  Google Scholar 

  25. Bucci B, D’Agnano I, Amendola D, Citti A, Raza GH, Miceli R, De Paula U, Marchese R, Albini S, Felsani A, Brunetti E, Vecchione A (2005) Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 11:2756–2767

    Article  CAS  PubMed  Google Scholar 

  26. Bindra RS, Glazer PM (2007) Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252:93–103

    Article  CAS  PubMed  Google Scholar 

  27. Maclean KH, Keller UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL (2003) c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 23:7256–7270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V, van den Brink GR, Vousden KH, Sears R, Vassilev LT, Clarke AR, Sansom OJ (2014) Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ 21:956–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wahlström T, Henriksson MA (2014) Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2014.07.004

    PubMed  Google Scholar 

  30. Sheen JH, Woo JK, Dickson RB (2003) c-Myc alters the DNA damage-induced G2/M arrest in human mammary epithelial cells. Br J Cancer 89:1479–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Li Z, Owonikoko TK, Sun SY, Ramalingam SS, Doetsch PW, Xiao ZQ, Khuri FR, Curran WJ, Deng X (2012) c-Myc suppression of DNA double-strand break repair. Neoplasia 14:1190–1202

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rahmutulla B, Matsushita K, Satoh M, Seimiya M, Tsuchida S, Kubo S, Shimada H, Ohtsuka M, Miyazaki M, Nomura F (2014) Alternative splicing of FBP-interacting repressor coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 expression as a molecular sensor for bleomycin-induced DNA damage pathway. Oncotarget 5:2404–2417

    PubMed Central  PubMed  Google Scholar 

  33. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chan DW, Lees-Miller SP (1996) The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J Biol Chem 271:8936–8941

    Article  CAS  PubMed  Google Scholar 

  35. Yan YQ, Zhang B, Wang L, Xie YH, Peng T, Bai B, Zhou PK (2007) Induction of apoptosis and autophagic cell death by the vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde is accompanied by the cleavage of DNA-PKcs and rapid destruction of c-Myc oncoprotein in HepG2 cells. Cancer Lett 252:280–289

    Article  CAS  PubMed  Google Scholar 

  36. Shrivastav Meena, De Haro Leyma P, Nickoloff Jac A (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  37. Gravina GL, Marampon F, Sherris D, Vittorini F, Di Cesare E, Tombolini V, Lenzi A, Jannini EA, Festuccia C (2014) Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1-mediated survivin function and delaying DNA repair in prostate cancer models. Prostate 74:852–868

    Article  CAS  PubMed  Google Scholar 

  38. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wade MA, Sunter NJ, Fordham SE, Long A, Masic D, Russell LJ, Harrison CJ, Rand V, Elstob C, Bown N, Rowe D, Lowe C, Cuthbert G, Bennett S, Crosier S, Bacon CM, Onel K, Scott K, Scott D, Travis LB, May FE, Allan JM (2014) c-MYC is a radiosensitive locus in human breast cells. Oncogene. doi:10.1038/onc.2014.427

    Google Scholar 

  40. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ, Hilsenbeck SG, Schiff R, Shaw CA, Elledge SJ, Westbrook TF (2012) A SUMOylation-dependent transcriptional subprogram is required for myc-driven tumorigenesis. Science 335:348–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation (Grant 81172706, 81173081, 81201757 and 31370843) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Kun Zhou.

Additional information

Feng-Mei Cui, Rong Fan and Qiu Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, F., Fan, R., Chen, Q. et al. The involvement of c-Myc in the DNA double-strand break repair via regulating radiation-induced phosphorylation of ATM and DNA-PKcs activity. Mol Cell Biochem 406, 43–51 (2015). https://doi.org/10.1007/s11010-015-2422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2422-2

Keywords

Navigation