Skip to main content
Log in

Cryptotanshinone inhibits human glioma cell proliferation by suppressing STAT3 signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Malignant gliomas (MGs) are among the most aggressive types of cancers in the human brain. Frequent tumor recurrence caused by a lack of effective therapeutic approaches results in a poor prognosis. Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein, is constitutively activated in MGs and predicts a poor clinical outcome. STAT3 therefore is considered to be a promising target for the treatment of MGs. Cryptotanshinone (CTS), the main bioactive compound from the root of Salvia miltiorrhiza Bunge, has been reported to have various pharmacological effects. However, little is known about its function in MG cells. In this study, we evaluated the effect of CTS on the proliferation of human glioma cell lines (T98G and U87). Our results revealed that CTS significantly suppresses glioma cell proliferation. The phosphorylation of STAT3 Tyr705, but not Ser727, was inhibited by CTS, and STAT3 nuclear translocation was attenuated. Overexpression of constitutively active mutant STAT3C reversed the inhibitory effect of CTS, while knockdown STAT3 showed a similar inhibitory effect as CTS treatment. Following the downregulation of STAT3-regulated proteins cyclinD1 and survivin, cell cycle progression significantly arrested in G1/G0 phase. These results indicate that CTS may be a potential antiproliferation agent for the treatment of MGs and that its mechanism may be related to the inhibition of STAT3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  2. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14:v1–v49

    Article  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  4. Deorah S, Lynch CF, Sibenaller ZA, Ryken TC (2006) Trends in brain cancer incidence and survival in the United States: surveillance, epidemiology, and end results program, 1973–2001. Neurosurg Focus 20:E1

    Article  PubMed  Google Scholar 

  5. Lo HW (2010) Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr Cancer Drug Targets 10:840–848

    Article  PubMed  CAS  Google Scholar 

  6. Herbert B Newton (2004) Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: pI3K/Akt/PTEN, mTOR. SHH/PTCH and angiogenesis 4:105–128

    Google Scholar 

  7. Stechishin OD, Luchman HA, Ruan Y et al (2013) On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro Oncol 15:198–207

    Article  PubMed  CAS  Google Scholar 

  8. Doucette TA, Kong LY, Yang Y et al (2012) Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro Oncol 14:1136–1145

    Article  PubMed  CAS  Google Scholar 

  9. Heimberger AB, Priebe W (2008) Small molecular inhibitors of p-STAT3: novel agents for treatment of primary and metastatic CNS cancers. Recent Pat CNS Drug Discov 3:179–188

    Article  PubMed  CAS  Google Scholar 

  10. Carro MS, Lim WK, Alvarez MJ et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325

    Article  PubMed  CAS  Google Scholar 

  11. Huang S (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Cancer Res 13:1362–1366

    CAS  Google Scholar 

  12. Heimberger AB (2011) The therapeutic potential of inhibitors of the signal transducer and activator of transcription 3 for central nervous system malignancies. Surg Neurol Int 2:163

    Article  PubMed  Google Scholar 

  13. Ang KP, Tan HK, Selvaraja M et al (2011) Cryptotanshinone attenuates in vitro oxLDL-induced pre-lesional atherosclerotic events. Planta Med 77:1782–1787

    Article  PubMed  CAS  Google Scholar 

  14. Jin YC, Kim CW, Kim YM et al (2009) Cryptotanshinone, a lipophilic compound of Salvia miltiorrhiza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur J Pharmacol 614:91–97

    Article  PubMed  CAS  Google Scholar 

  15. Tang S, Shen XY, Huang HQ et al (2011) Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 34:111–118

    Article  PubMed  CAS  Google Scholar 

  16. Mei Z, Zhang F, Tao L et al (2009) Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alpha-secretase in vivo and in vitro. Neurosci Lett 452:90–95

    Article  PubMed  CAS  Google Scholar 

  17. Park IJ, Kim MJ, Park OJ et al (2012) Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis 17:248–257

    Article  PubMed  CAS  Google Scholar 

  18. Gong Y, Li Y, Lu Y et al (2011) Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer 129:1042–1052

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Zhang Q, Chu T et al (2012) Growth-inhibitory and apoptosis-inducing effects of tanshinones on hematological malignancy cells and their structure-activity relationship. Anticancer Drugs 23:846–855

    Article  PubMed  CAS  Google Scholar 

  20. Ye Y, Xu W, Zhong W (2010) Effects of cryptotanshinone on proliferation and apoptosis of Hela cell line of cervical cancer. Zhongguo Zhong Yao Za Zhi 35:118–121

    PubMed  CAS  Google Scholar 

  21. Shin DS, Kim HN, Shin KD (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202

    Article  PubMed  CAS  Google Scholar 

  22. Chen W, Luo Y, Liu L et al (2010) Cryptotanshinone inhibits cancer cell proliferation by suppressing Mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev Res (Phila) 3:1015–1025

    Article  CAS  Google Scholar 

  23. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  PubMed  CAS  Google Scholar 

  24. Hillion J, Dhara S, Sumter TF et al (2008) The high-mobility group A1a/signal transducer and activator of transcription-3 axis: an achilles heel for hematopoietic malignancies? Cancer Res 68:10121–10127

    Article  PubMed  CAS  Google Scholar 

  25. Weissenberger J, Priester M, Bernreuther C et al (2010) Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway. Clin Cancer Res 16:5781–5795

    Article  PubMed  CAS  Google Scholar 

  26. Pan Y, Bi HC, Zhong GP et al (2008) Pharmacokinetic characterization of hydroxylpropyl-beta-cyclodextrin-included complex of cryptotanshinone, an investigational cardiovascular drug purified from Danshen (Salvia miltiorrhiza). Xenobiotica 38:382–398

    Article  PubMed  CAS  Google Scholar 

  27. Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104:16158–16163

    Article  PubMed  CAS  Google Scholar 

  28. Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662–5679

    Article  PubMed  CAS  Google Scholar 

  29. Don MJ, Liao JF, Lin LY, Chiou WF (2007) Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway. Br J Pharmacol 151:638–646

    Article  PubMed  CAS  Google Scholar 

  30. Cavalla P, Dutto A, Piva R et al (1998) Cyclin D1 expression in gliomas. Acta Neuropathol 95:131–135

    Article  PubMed  CAS  Google Scholar 

  31. Yamada Y, Kuroiwa T, Nakagawa T et al (2003) Transcriptional expression of survivin and its splice variants in brain tumors in humans. J Neurosurg 99:738–745

    Article  PubMed  CAS  Google Scholar 

  32. Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15:158–163

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki A, Hayashida M, Ito T et al (2000) Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16 (INK4a) and Cdk2/cyclin E complex activation. Oncogene 19:3225–3234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31070924 and 81173056), Projects of International Cooperation and Exchanges, Science and Technology Planning Project of Guangdong Province, China (No. 1011420600004), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20100171110052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Li, C., Li, D. et al. Cryptotanshinone inhibits human glioma cell proliferation by suppressing STAT3 signaling. Mol Cell Biochem 381, 273–282 (2013). https://doi.org/10.1007/s11010-013-1711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1711-x

Keywords

Navigation