Skip to main content

Advertisement

Log in

Isolation and characterization of stem-like cells from a human ovarian cancer cell line

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increasing evidence supports the existence of a subpopulation of cancer cells capable of self-renewal and differentiation into diverse cell lineages. These cancer stem-like or cancer-initiating cells (CICs) also demonstrate resistance to chemo- and radiotherapy and may function as a primary source of cancer recurrence. We report here on the isolation and in vitro propagation of multicellular ovarian cancer spheroids from a well-established ovarian cancer cell line (OVCAR-3). The spheroid-derived cells (SDCs) display self-renewal potential, the ability to produce differentiated progeny, and increased expression of genes previously associated with CICs. SDCs also demonstrate higher invasiveness, migration potential, and enhanced resistance to standard anticancer agents relative to parental OVCAR-3 cells. Furthermore, SDCs display up-regulation of genes associated with epithelial-to-mesenchymal transition (EMT), anticancer drug resistance and/or decreased susceptibility to apoptosis, as well as, down-regulation of genes typically associated with the epithelial cell phenotype and pro-apoptotic genes. Pathway and biological process enrichment analyses indicate significant differences between the SDCs and precursor OVCAR-3 cells in TGF-beta-dependent induction of EMT, regulation of lipid metabolism, NOTCH and Hedgehog signaling. Collectively, our results indicate that these SDCs will be a useful model for the study of ovarian CICs and for the development of novel CIC-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Herzog TJ (2004) Recurrent ovarian cancer: how important is it to treat to disease progression? Clin Cancer Res 10:7439–7449

    Article  PubMed  CAS  Google Scholar 

  3. McDermott SP, Wicha MS (2010) Targeting breast cancer stem cells. Mol Oncol 4:404–419

    Article  PubMed  CAS  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  7. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236

    Article  PubMed  CAS  Google Scholar 

  8. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  9. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  10. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  11. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  12. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  13. Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, Whang-Peng J, Rogan AM, Green WR, Ozols RF (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5389

    PubMed  CAS  Google Scholar 

  14. Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98:1755–1757

    Article  PubMed  Google Scholar 

  15. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  16. Wicha MS, Liu S and Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66:1883–1890; discussion 1895–1896. doi:10.1158/0008-5472.CAN-05-3153

    Google Scholar 

  17. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516

    Article  PubMed  CAS  Google Scholar 

  18. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    Article  PubMed  CAS  Google Scholar 

  19. Gao Q, Geng L, Kvalheim G, Gaudernack G, Suo Z (2009) Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3. Ultrastruct Pathol 33:175–181. doi:10.1080/01913120903086072

    PubMed  Google Scholar 

  20. Ma L, Lai D, Liu T, Cheng W, Guo L (2010) Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai) 42:593–602

    Article  CAS  Google Scholar 

  21. Cammareri P, Lombardo Y, Giovanna MF, Bonventre S, Todaro M, Stassi G (2008) Isolation and culture of colon cancer stem cells. In: Mather JP (ed) Stem Cell Culture, 1st edn. Academic Press, New York, pp 311–324

    Chapter  Google Scholar 

  22. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029

    PubMed  CAS  Google Scholar 

  23. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  PubMed  CAS  Google Scholar 

  24. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8:158–166

    Article  PubMed  CAS  Google Scholar 

  25. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28:209–218

    Article  PubMed  CAS  Google Scholar 

  26. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29:2672–2680

    Article  PubMed  CAS  Google Scholar 

  27. Shi MF, Jiao J, Lu WG, Ye F, Ma D, Dong QG, Xie X (2010) Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cell Mol Life Sci 67:3915–3925

    Article  PubMed  CAS  Google Scholar 

  28. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  29. Levina V, Marrangoni AM, De Marco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3:e3077

    Article  PubMed  Google Scholar 

  30. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  31. Du Z, Li J, Wang L, Bian C, Wang Q, Liao L, Dou X, Bian X, Zhao RC (2010) Overexpression of DeltaNp63alpha induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci 101:2417–2424

    Article  PubMed  CAS  Google Scholar 

  32. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105:13427–13432

    Article  PubMed  CAS  Google Scholar 

  33. Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H (2011) Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol 47:83–91

    Article  PubMed  Google Scholar 

  34. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, Honorio S, Xie Y, Scaglioni PP, DiMaio JM, Gazdar AF, Shay JW, Wistuba II, Minna JD (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70:9937–9948

    Article  PubMed  CAS  Google Scholar 

  35. Sanders MA, Majumdar AP (2011) Colon cancer stem cells: implications in carcinogenesis. Front Biosci 16:1651–1662

    Article  PubMed  CAS  Google Scholar 

  36. Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC Jr, Coleman RL, Lopez-Berestein G, Sood AK (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9:3186–3199

    Article  PubMed  CAS  Google Scholar 

  37. Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA, Jiang F (2010) Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19:327–337

    Article  PubMed  CAS  Google Scholar 

  38. Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F (2010) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 90:234–244

    Article  PubMed  CAS  Google Scholar 

  39. Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3:237–246

    Article  PubMed  CAS  Google Scholar 

  40. Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30:49–57

    Article  PubMed  CAS  Google Scholar 

  41. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  42. Roberts PE (2008) Isolation and establishment of human tumor stem cells. In: Mather JP (ed) Method in Cell Biology, 1st edn. Academic Press, New York, pp 325–342

    Google Scholar 

  43. Freedman VH, Shin SI (1974) Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3:355–359

    Article  PubMed  CAS  Google Scholar 

  44. Kruyt FA, Schuringa JJ (2010) Apoptosis and cancer stem cells: implications for apoptosis targeted therapy. Biochem Pharmacol 80:423–430. doi:10.1016/j.bcp.2010.04.010

    Article  PubMed  CAS  Google Scholar 

  45. Valentijn AJ, Gilmore AP (2004) Translocation of full-length bid to mitochondria during anoikis. J Biol Chem 279:32848–32857. doi:10.1074/jbc.M313375200

    Article  PubMed  CAS  Google Scholar 

  46. Ponnusamy MP, Batra SK (2008) Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res 1:4

    Article  PubMed  Google Scholar 

  47. Veeck J, Noetzel E, Bektas N, Jost E, Hartmann A, Knuchel R, Dahl E (2008) Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Mol Cancer 7:83

    Article  PubMed  Google Scholar 

  48. Cooper D, Schermer A, Sun TT (1985) Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Lab Invest 52:243–256

    PubMed  CAS  Google Scholar 

  49. Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19:294–308

    Article  PubMed  CAS  Google Scholar 

  50. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5:e12445

    Article  PubMed  Google Scholar 

  51. Chen C, Wei Y, Hummel M, Hoffmann TK, Gross M, Kaufmann AM, Albers AE (2011) Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 6:e16466

    Article  PubMed  CAS  Google Scholar 

  52. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  53. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107:15449–15454. doi:10.1073/pnas.1004900107

    Article  PubMed  CAS  Google Scholar 

  54. Chai JY, Modak C, Mouazzen W, Narvaez R, Pham J (2010) Epithelial or mesenchymal: where to draw the line? Biosci Trends 4:130–142

    PubMed  CAS  Google Scholar 

  55. Bussolino F, Arese M, Audero E, Giraudo E, Marchio S, Mitola S, Primo L, Serini G (2003) Biological aspects of tumour angiogenesis. In: Preziosi L (ed) Cancer modelling and simulation. CRC Press, USA

    Google Scholar 

  56. Pollock CB, Rodriguez O, Martin PL, Albanese C, Li X, Kopelovich L, Glazer RI (2010) Induction of metastatic gastric cancer by peroxisome proliferator-activated receptordelta activation. PPAR Res 2010:571783

    Article  PubMed  Google Scholar 

  57. Chapuy B, Koch R, Radunski U, Corsham S, Cheong N, Inagaki N, Ban N, Wenzel D, Reinhardt D, Zapf A, Schweyer S, Kosari F, Klapper W, Truemper L, Wulf GG (2008) Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 22:1576–1586

    Article  PubMed  CAS  Google Scholar 

  58. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  59. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo YM, Rochdi M, Howell SB (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    PubMed  CAS  Google Scholar 

  60. Eliopoulos AG, Kerr DJ, Herod J, Hodgkins L, Krajewski S, Reed JC, Young LS (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11:1217–1228

    PubMed  CAS  Google Scholar 

  61. Djeu JY, Wei S (2009) Clusterin and chemoresistance. Adv Cancer Res 105:77–92. doi:10.1016/S0065-230X(09)05005-2

    Article  PubMed  CAS  Google Scholar 

  62. Bu R, Uddin S, Bavi P, Hussain AR, Al-Dayel F, Ghourab S, Ahmed M, Al-Kuraya KS (2011) HGF/c-Met pathway has a prominent role in mediating antiapoptotic signals through AKT in epithelial ovarian carcinoma. Lab Invest 91:124–137. doi:10.1038/labinvest.2010.136

    Article  PubMed  CAS  Google Scholar 

  63. Tajima K, Ohashi R, Sekido Y, Hida T, Nara T, Hashimoto M, Iwakami S, Minakata K, Yae T, Takahashi F, Saya H, Takahashi K (2010) Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells. Oncogene 29:1941–1951

    Article  PubMed  CAS  Google Scholar 

  64. Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623. doi:10.1074/jbc.M202285200

    Article  PubMed  CAS  Google Scholar 

  65. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625. doi:10.1016/j.ceb.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  66. Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513

    Article  PubMed  CAS  Google Scholar 

  67. Ween MP, Oehler MK, Ricciardelli C (2011) Hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci 12(2):1009–1029

    Article  PubMed  CAS  Google Scholar 

  68. Vital-Reyes V, Rodriguez-Burford C, Chhieng DC, Oelschlager DK, Reyes-Fuentes A, Barnes M, Grizzle WE (2006) Celecoxib inhibits cellular growth, decreases Ki-67 expression and modifies apoptosis in ovarian cancer cell lines. Arch Med Res 37:689–695

    Article  PubMed  CAS  Google Scholar 

  69. Liu SF, Ye X, Malik AB (1999) Pyrrolidine dithiocarbamate prevents I-kappaB degradation and reduces microvascular injury induced by lipopolysaccharide in multiple organs. Mol Pharmacol 55:658–667

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Ovarian Cancer Institute, The Ovarian Cycle Foundation, The Robinson Family Foundation, The Deborah Nash Harris Endowment Fund, The Waterfall Foundation and OBNET Women’s Healthcare. The authors thank Dr. DeEtte Walker for reviewing an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. McDonald.

Additional information

Lijuan Wang and Roman Mezencev contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28917 kb)

Supplementary material 2 (XLS 3078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Mezencev, R., Bowen, N.J. et al. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Mol Cell Biochem 363, 257–268 (2012). https://doi.org/10.1007/s11010-011-1178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1178-6

Keywords

Navigation