Skip to main content

Advertisement

Log in

Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The inducible COX-2 enzyme is over-expressed in human breast cancer and its over-expression generally correlates with angiogenesis, deregulation of apoptosis and worse prognosis. This observation may explain the beneficial effect of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors on breast cancer treatment. Here, we evaluated the antiproliferative activity of celecoxib, a selective COX-2 inhibitor, and its nitro-oxy derivative on human breast cancer cells characterized by low and high COX-2 expression, respectively. In ERα(+) MCF-7 cells celecoxib and its derivative induce a strong inhibition of cell growth, inhibition that is associated with the reduction of ERα expression and activation. These effects may be directly associated with ERK and Akt suppression and with PP2A and PTEN induction. In this cell line the drugs exert only weak effect on COX-2 level while they are able to reduce aromatase expression. On the contrary, in ERα(−) MDA-MB-231 cells, both drugs induce a marked inhibition of COX-2, inhibition that is associated with the reduction of aromatase expression and of cell proliferation. In both cell lines the effects of the drugs are associated with the suppression of cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Reeder JG, Vogel VG (2007) Breast cancer risk management. Clin Breast Cancer 7:833–840

    Article  PubMed  CAS  Google Scholar 

  3. Howe LR, Subbaramaiah K, Brown AM, Dannenberg AJ (2001) Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer 8:97–114

    Article  PubMed  CAS  Google Scholar 

  4. Ristimäki A, Sivula A, Lundin J et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635

    PubMed  Google Scholar 

  5. Richards JA, Petrel TA, Brueggemeier RW (2002) Signaling pathways regulating aromatase and cyclooxygenases in normal and malignant breast cells. J Steroid Biochem Mol Biol 80:203–212

    Article  PubMed  CAS  Google Scholar 

  6. Mazhar D, Ang R, Wazman J (2006) COX inhibitors and breast cancer. Br J Cancer 94:346–350

    Article  PubMed  CAS  Google Scholar 

  7. Terry MB, Gammon MD, Zhang FF et al (2004) Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk. JAMA 20:2433–2440

    Article  Google Scholar 

  8. Brueggemeier RW, Su B, Sugimoto Y et al (2007) Aromatase and COX in breast cancer: enzyme inhibitors and beyond. J Steroid Biochem Mol Biol 106:16–23

    Article  PubMed  CAS  Google Scholar 

  9. Díaz-Cruz ES, Shapiro CL, Brueggemeier RW (2005) Cyclooxygenase inhibitors suppress aromatase expression and activity in breast cancer cells. J Clin Endocrinol Metab 90:2563–2570

    Article  PubMed  Google Scholar 

  10. Prosperi JR, Robertson FM (2006) Cyclooxygenase-2 directly regulates gene expression of P450 Cyp19 aromatase promoter regions pII, pI.3 and pI.7 and estradiol production in human breast tumor cells. Prostaglandins Other Lipid Mediat 81:55–70

    Article  PubMed  CAS  Google Scholar 

  11. Altundag K, Ibrahim NK (2006) Aromatase inhibitors in breast cancer: an overview. Oncologist 11:553–562

    Article  PubMed  CAS  Google Scholar 

  12. Gill K, Kirma N, Tekmal RR (2001) Overexpression of aromatase in transgenic male mice in the induction of gynecomastia and other biochemical changes in mammary glands. J Steroid Biochem Mol Biol 77:13–18

    Article  PubMed  CAS  Google Scholar 

  13. Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726–741

    Article  PubMed  CAS  Google Scholar 

  14. Wong CW, McNally C, Nickbarg E et al (2002) Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci USA 99:14783–14788

    Article  PubMed  CAS  Google Scholar 

  15. Campbell RA, Bhat-Nakshatri P, Patel NM et al (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Article  PubMed  CAS  Google Scholar 

  16. Levin ER (2005) Integration of the extra-nuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    Article  PubMed  CAS  Google Scholar 

  17. Reddy BS, Hirose Y, Lubet R et al (2000) Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 60:293–297

    PubMed  CAS  Google Scholar 

  18. Harris RE, Beebe-Donk J, Alshafie GA (2006) Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 6:27–31

    Article  PubMed  Google Scholar 

  19. Dandekar DS, Lopez M, Carey RI, Lokeshwar BL (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115:484–492

    Article  PubMed  CAS  Google Scholar 

  20. Del Grosso E, Boschi D, Lazzarato L et al (2005) The furoxan system: design of selective nitric oxide (NO) donor inhibitors of COX-2 endowed with anti-aggregatory and vasodilating activities. Chem Biodivers 2:886–900

    Article  PubMed  CAS  Google Scholar 

  21. Bozzo F, Bassignana A, Lazzarato L et al (2009) Novel nitro-oxy derivatives of celecoxib for the regulation of colon cancer cell growth. Chem Biol Interact 182:183–190

    Article  PubMed  CAS  Google Scholar 

  22. Boschi D, Lazzarato L, Rolando B et al (2009) Nitrooxymethyl substituted analogues of celecoxib: synthesis and pharmacological characterization. Chem Biodivers 6:369–379

    Article  PubMed  CAS  Google Scholar 

  23. Chang F, Lee JT, Navolanic PM et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  PubMed  CAS  Google Scholar 

  24. Cannito S, Novo E, Compagnone A et al (2008) Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 29:2267–2278

    Article  PubMed  CAS  Google Scholar 

  25. Ikeda K, Inoue S (2004) Estrogen receptors and their downstream targets in cancer. Arch Histol Cytol 64:67435–67442

    Google Scholar 

  26. Lu Q, Surks HK, Ebling H, Baur WE, Brown D, Pallas DC, Karas RH (2003) Regulation of estrogen receptor alpha-mediated transcription by a direct interaction with protein phosphatase 2A. J Biol Chem 278:4639–4645

    Article  PubMed  CAS  Google Scholar 

  27. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919

    Article  PubMed  CAS  Google Scholar 

  28. Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210–211

    Article  PubMed  Google Scholar 

  29. Di GH, Lu JS, Song CG et al (2005) Over expression of aromatase protein is highly related to MMPs levels in human breast carcinomas. Exp Clin Cancer Res 24:601–607

    CAS  Google Scholar 

  30. Bray F, McCarron P, Parkin DM (2004) The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res 6:229–239

    Article  PubMed  Google Scholar 

  31. Juuti A, Louhimo J, Nordling S et al (2006) Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. J Clin Pathol 59:382–386

    Article  PubMed  CAS  Google Scholar 

  32. Liu CH, Chang SH, Narko K et al (2001) Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276:18563–18569

    Article  PubMed  CAS  Google Scholar 

  33. Alshafie GA, Abou-Issa HM, Seibert K, Harris RE (2000) Chemotherapeutic evaluation of Celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model. Oncol Rep 7:1377–1381

    PubMed  CAS  Google Scholar 

  34. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657

    Article  PubMed  CAS  Google Scholar 

  35. Perez-Tenorio G, Stal O (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86:540–545

    Article  PubMed  CAS  Google Scholar 

  36. Tokunaga E, Kimura Y, Oki E et al (2006) Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. Int J Cancer 118:284–289

    Article  PubMed  CAS  Google Scholar 

  37. Mawson A, Lai A, Carroll JS et al (2005) Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Mol Cell Endocrinol 229:161–173

    Article  PubMed  CAS  Google Scholar 

  38. Kato S, Endoh H, Masuhiro Y et al (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  PubMed  CAS  Google Scholar 

  39. Martin MB, Franke TF, Stoica TF et al (2000) A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 141:4503–4511

    Article  PubMed  CAS  Google Scholar 

  40. Ranatunge RR, Augustyniak M, Bandarage UK et al (2004) Synthesis and selective cyclooxygenase-2 inhibitory activity of a series of novel, nitric oxide donor-containing pyrazoles. J Med Chem 47:2180–2193

    Article  PubMed  CAS  Google Scholar 

  41. Chegaev K, Lazzarato L, Tosco P et al (2007) NO-donor COX-2 inhibitors. New nitrooxy-substituted 1,5-diarylimidazoles endowed with COX-2 inhibitory and vasodilator properties. J Med Chem 50:1449–1457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was received from Regione Piemonte and University of Torino.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocca, C., Bozzo, F., Bassignana, A. et al. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol Cell Biochem 350, 59–70 (2011). https://doi.org/10.1007/s11010-010-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0682-4

Keywords

Navigation