Skip to main content
Log in

Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa cells to various stresses

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The heterogeneous nuclear ribonucleoprotein C1/C2 is one of the most abundant proteins in the nucleus, and shown to have roles in cellular differentiation and proliferation through post-transcriptional regulations of certain mRNA species. We studied its role in stress response using siRNA mediated knockdown approach in HeLa cells. Upon transient transfection with plasmid encoding siRNA, the cells showed increased sensitivities to various chemical agents, namely H2O2, paraquat, camptothecin, ICRF-193 and halogenated deoxyuridines. These results demonstrate that hnRNP C1/C2 is involved in maintenance of cellular homeostasis besides cellular differentiation and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-Binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  PubMed  CAS  Google Scholar 

  2. Weighardt F, Biamonti G, Silvano R (1996) The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioassays 18:747–756

    Article  CAS  Google Scholar 

  3. Burd CG, Swanson MS, Görlach M, Dreyfuss G (1989) Primary structure of the A2, B1 and C2 hnRNP proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc Natl Acad Sci USA 86:9788–9792

    Article  PubMed  CAS  Google Scholar 

  4. McAfee JG, Shahied-Milam L, Soltaninassab SR, LeStourgeon WM (1996) A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA 2:1139–1152

    PubMed  CAS  Google Scholar 

  5. Rech JE, LeStourgeon WM, Flicker PF (1995) Ultrastructural morphology of the hnRNP C protein tetramer. J Struct Biol 114:77–83

    Article  PubMed  CAS  Google Scholar 

  6. Barnett SF, Friedman DL, LeStourgeon WM (1989) The C proteins of HeLa 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2. Mol Cell Biol 9:492–498

    PubMed  CAS  Google Scholar 

  7. Pinol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA bindingproteins between nucleus and cytoplasm. Nature 355:730–732

    Article  PubMed  CAS  Google Scholar 

  8. Van Eekelen CA,Van Venrooij WJ (1981) hnRNA and its attachment to a nuclear protein matrix. J Cell Biol 88:554–563

    Article  PubMed  Google Scholar 

  9. Williamson DJ, Banik-Maiti S, DeGregori J, Ruley HE (2000) hnRNP C is required for postimplantation mouse development but Is dispensable for cell viability. Mol Cell Biol 20:4094–4105

    Article  PubMed  CAS  Google Scholar 

  10. Tan JH, Kajiwara Y, Shahied L, Li J, McAfee JG, LeStourgeon WM (2001) The bZIP-like motif of hnRNP C directs the nuclear accumulation of pre-mRNA and lethality in yeast. J Mol Biol 26:829–838

    Article  CAS  Google Scholar 

  11. Michishita E, Kurahashi T, Suzuki T, Fukuda M, Fujii M, Hirano H, Ayusawa D (2002) Changes in nuclear matrix proteins during the senescence-like phenomenon induced by 5-chlorodeoxyuridine in HeLa cells. Exp Gerontol 37:885–890

    Article  PubMed  CAS  Google Scholar 

  12. Michishita E, Matsumura N, Kurahashi T, Suzuki T, Ogino H, Fujii M, Ayusawa D (2002) 5-Halogenated thymidine analogues induce a senescence-like phenomenon in HeLa cells. Biosci Biotechnol Biochem 66:877–879

    Article  PubMed  CAS  Google Scholar 

  13. Lee HH, Chien CL, Liao HK, Chen YJ,Chang ZF (2004) Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation. J Cell Sci 117 Pt 23:5579–5589

    Google Scholar 

  14. Stone JR, Collins T (2002) The role of hydrogen peroxide in endothelial proliferative responses. Endothelium 9:231–238

    Article  PubMed  CAS  Google Scholar 

  15. Davies KJA (1999) The broad spectrum of responses to oxidants in proliferating cells: A new paradigm for oxidative stress. IUBMB Life 48:41–47

    PubMed  CAS  Google Scholar 

  16. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Bio Med 18:775–794

    Article  CAS  Google Scholar 

  17. Stone JR, Maki JL, Collins T (2003) Basal and hydrogen peroxide stimulated sites of phosphorylation in heterogeneous nuclear ribonucleoprotein C1/C2. Biochemistry 42:1301–1308

    Article  PubMed  CAS  Google Scholar 

  18. Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, Fujii M, Mitsui Y, Ayusawa D (1999) 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem (Tokyo) 126:1052–1059

    CAS  Google Scholar 

  19. Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Ann Rev Biochem 58:351–375

    Article  PubMed  CAS  Google Scholar 

  20. Wang JC (1996) DNA Topoisomerases. Ann Rev Biochem 65:635–692

    Article  PubMed  CAS  Google Scholar 

  21. Muggia FM, Burris HA (1994) Clinical development of topoisomerase-interactive drugs. Adv Pharmacol 29B:1–31

    PubMed  CAS  Google Scholar 

  22. Schneider E, Hsiang YH, Liu LF (1990) DNA topoisomerases as anticancer drug targets. Adv Pharmacol 21:149–183

    Article  PubMed  CAS  Google Scholar 

  23. Michishita E, Nakabayashi K, Ogino H, Suzuki T, Fujii M, Ayusawa D (1998) DNA topoisomerase inhibitors induce reversible senescence in normal human fibroblasts. Biochem Biophys Res Commun 253:667–671

    Article  PubMed  CAS  Google Scholar 

  24. He Y, Brown MA, Rothnagel JA, Saunders NA, Smith R (2005) Roles of heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. J Cell Sci 118:3173Gȴ3183

    Article  PubMed  CAS  Google Scholar 

  25. Duan J, Duan J, Zhang Z, Tong T (2005) Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Intl J Biochem Cell Biol 37:1407–1420

    Article  CAS  Google Scholar 

  26. Lee SY, Park JH, Kim S, Park EJ, Yun Y, Kwon J (2005) A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks. Biochem J 15:7–15

    CAS  Google Scholar 

  27. Porter SE, Champoux JJ (1989) The basis for camptothecin enhancement of DNA breakage by eukaryotic topoisomerase I. Nucleic Acids Res 17:8521–8532

    Article  PubMed  CAS  Google Scholar 

  28. Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987

    Article  PubMed  CAS  Google Scholar 

  29. Adachi N, Suzuki H, Iiizumi S, Koyama H (2003) Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193: implications for the repair of topoisomerase II-mediated DNA damage. J Biol Chem 278:35897–35902

    Article  PubMed  CAS  Google Scholar 

  30. Vagner S, Galy B, Pyronnet S (2001) Irresistible IRES attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2:893–898

    Article  PubMed  CAS  Google Scholar 

  31. Holcik M, Gordon BW, Korneluk RG (2003) The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23:280–288

    Article  PubMed  CAS  Google Scholar 

  32. Sella O, Gerlitz G, Le SY, Elroy-Stein O (1999) Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol Cell Biol 19:5429–5440

    PubMed  CAS  Google Scholar 

  33. Kim JH, Paek KY, Choi K, Kim TD, Hahm B, Kim KT, Jang SK (2003) Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 23:708–720

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Ayusawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.N., Fuji, M., Miki, K. et al. Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa cells to various stresses. Mol Cell Biochem 296, 151–157 (2007). https://doi.org/10.1007/s11010-006-9308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9308-2

Keywords

Navigation