Skip to main content

Advertisement

Log in

The Role of ErbB3 and its Binding Partners in Breast Cancer Progression and Resistance to Hormone and Tyrosine Kinase Directed Therapies

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

An increasingly important role for the ErbB3 receptor in the genesis and progression of breast cancer is emerging. ErbB3 is frequently overexpressed in breast cancer and coexpression of ErbB2/3 is a poor prognostic indicator. ErbB3 has also been implicated in the development of resistance to antiestrogens such as tamoxifen and ErbB tyrosine kinase inhibitors such as gefitinib. Persistent activation of the AKT pathway has been postulated to contribute to ErbB3-mediated resistance to these therapies. This activation may be due in part to the inappropriate production of the ErbB3 ligand heregulin. ErbB3 binding proteins, which negatively regulate ErbB3 protein levels and the ability of ErbB3 to transmit proliferative signals, also contribute to breast cancer progression and treatment resistance. These proteins include the intracellular RING finger E3 ubiquitin ligase Nrdp1 and the leucine-rich protein LRIG-1 that mediate receptor degradation. Ebp1, another ErbB3 binding protein, suppresses HRG driven breast cancer cell growth and contributes to tamoxifen sensitivity. These studies point to the importance of the evaluation of protein levels and functional activity of ErbB3 and its binding proteins in breast cancer prognosis and prediction of clinical response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

HRG1:

heregulin-1

Nrdp1:

neuregulin receptor degradation protein-1

Ebp1:

ErbB3 receptor binding protein 1

ER:

Estrogen Receptor

References

  1. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284(1):99–110.

    Article  PubMed  CAS  Google Scholar 

  2. Yarden Y. The EGFR family and its ligands in human cancer, signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–S8.

    Article  PubMed  CAS  Google Scholar 

  3. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA. 1989;86(23):9193–7.

    Article  PubMed  CAS  Google Scholar 

  4. Fedi P, Pierce JH, di Fiore PP, Kraus MH. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol. 1994;14(1):492–500.

    PubMed  CAS  Google Scholar 

  5. Hellyer NJ, Cheng K, Koland JG. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J. 1998;333(Pt 3):757–63.

    PubMed  CAS  Google Scholar 

  6. Soltoff SP, Carraway KL III, Prigent SA, Gullick WG, Cantley LC. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol. 1994;14(6):3550–8.

    PubMed  CAS  Google Scholar 

  7. Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol. 2005;1:2005.

    Article  PubMed  CAS  Google Scholar 

  8. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.

    Article  PubMed  CAS  Google Scholar 

  9. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    Article  PubMed  CAS  Google Scholar 

  10. Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E, et al. Expression of the ERBB3 gene product in breast cancer. Br J Cancer. 1992;66(6):1116–21.

    PubMed  CAS  Google Scholar 

  11. Naidu R, Yadav M, Nair S, Kutty MK. Expression of c-erbB3 protein in primary breast carcinomas. Br J Cancer. 1998;78(10):1385–90.

    PubMed  CAS  Google Scholar 

  12. Travis A, Pinder SE, Robertson JF, Bell JA, Wencyk P, Gullick WJ, et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer. 1996;74(2):229–33.

    PubMed  CAS  Google Scholar 

  13. Gasparini G, Gullick WJ, Maluta S, Dalla PP, Caffo O, Leonardi E, et al. c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma—an immunocytochemical study. Eur J Cancer. 1994;30A(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  14. Bieche I, Onody P, Tozlu S, Driouch K, Vidaud M, Lidereau R. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer. 2003;106(5):758–65.

    Article  PubMed  CAS  Google Scholar 

  15. Pawlowski V, Revillion F, Hebbar M, Hornez L, Peyrat JP. Prognostic value of the type I growth factor receptors in a large series of human primary breast cancers quantified with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res. 2000;6(11):4217–25.

    PubMed  CAS  Google Scholar 

  16. Barnes NL, Khavari S, Boland GP, Cramer A, Knox WF, Bundred NJ. Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast. Clin Cancer Res. 2005;11(6):2163–8.

    Article  PubMed  CAS  Google Scholar 

  17. Quinn CM, Ostrowski JL, Lane SA, Loney DP, Teasdale J, Benson FA. c-erbB-3 protein expression in human breast cancer: comparison with other tumour variables and survival. Histopathology. 1994;25(3):247–52.

    Article  PubMed  CAS  Google Scholar 

  18. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol. 2003;200(3):290–7.

    Article  PubMed  CAS  Google Scholar 

  19. Wiseman SM, Makretsov N, Nielsen TO, Gilks B, Yorida E, Cheang M, et al. Coexpression of the type 1 growth factor receptor family members HER-1, HER-2, and HER-3 has a synergistic negative prognostic effect on breast carcinoma survival. Cancer. 2005;103(9):1770–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kim HH, Vijapurkar U, Hellyer NJ, Bravo D, Koland JG. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. Biochem J. 1998;334(Pt 1):189–95.

    PubMed  CAS  Google Scholar 

  21. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15(10):2452–67.

    PubMed  CAS  Google Scholar 

  22. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF III, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA. 2003;100(15):8933–8.

    Article  PubMed  CAS  Google Scholar 

  23. van der Horst EH, Murgia M, Treder M, Ullrich A. Anti-HER-3 MAbs inhibit HER-3-mediated signaling in breast cancer cell lines resistant to anti-HER-2 antibodies. Int J Cancer. 2005;115(4):519–27.

    Article  PubMed  CAS  Google Scholar 

  24. Chen CH, Chernis GA, Hoang VQ, Landgraf R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci USA. 2003;100(16):9226–31.

    Article  PubMed  CAS  Google Scholar 

  25. Lund CV, Popkov M, Magnenat L, Barbas CF III. Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology. Mol Cell Biol. 2005;25(20):9082–91.

    Article  PubMed  CAS  Google Scholar 

  26. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem. 2007;282(2):1479–86.

    Article  PubMed  CAS  Google Scholar 

  27. Clarke R, Leonessa F, Welch JN, Skaar TC. Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev. 2001;53(1):25–71.

    PubMed  CAS  Google Scholar 

  28. Mouridsen HT, Rose C, Brodie AH, Smith IE. Challenges in the endocrine management of breast cancer. Breast. 2003;12(Suppl 2):S2–19.

    Article  PubMed  Google Scholar 

  29. Newby JC, Johnston SR, Smith IE, Dowsett M. Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res. 1997;3(9):1643–51.

    PubMed  CAS  Google Scholar 

  30. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96(12):926–35.

    PubMed  CAS  Google Scholar 

  31. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10(12):2435–46.

    PubMed  CAS  Google Scholar 

  32. Tang CK, Perez C, Grunt T, Waibel C, Cho C, Lupu R. Involvement of heregulin-beta2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res. 1996;56(14):3350–8.

    PubMed  CAS  Google Scholar 

  33. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24(2):85–95.

    Article  PubMed  CAS  Google Scholar 

  34. Tovey S, Dunne B, Witton CJ, Forsyth A, Cooke TG, Bartlett JM. Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res. 2005;11(13):4835–42.

    Article  PubMed  CAS  Google Scholar 

  35. Liu B, Ordonez-Ercan D, Fan Z, Edgerton SM, Yang X, Thor AD. Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int J Cancer. 2007;120(9):1874–82.

    Article  PubMed  CAS  Google Scholar 

  36. deGraffenried LA, Friedrichs WE, Russell DH, Donzis EJ, Middleton AK, Silva JM, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res. 2004;10(23):8059–67.

    Article  PubMed  CAS  Google Scholar 

  37. Jordan NJ, Gee JM, Barrow D, Wakeling AE, Nicholson RI. Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat. 2004;87(2):167–80.

    Article  PubMed  CAS  Google Scholar 

  38. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1(9):707–17.

    PubMed  CAS  Google Scholar 

  39. Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF. Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer. 2005;12(Suppl 1):S135–S144.

    Article  PubMed  CAS  Google Scholar 

  40. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445(7126):437–41.

    Article  PubMed  CAS  Google Scholar 

  41. Menendez JA, Lupu R. Transphosphorylation of kinase-dead HER3 and breast cancer progression: a new standpoint or an old concept revisited? Breast Cancer Res. 2007;9(5):111.

    Article  PubMed  CAS  Google Scholar 

  42. Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer. 2007;97(4):453–7.

    Article  PubMed  CAS  Google Scholar 

  43. Motoyama AB, Hynes NE, Lane HA. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res. 2002;62(11):3151–8.

    PubMed  CAS  Google Scholar 

  44. Hutcheson IR, Knowlden JM, Hiscox SE, Barrow D, Gee JM, Robertson JF, et al. Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res. 2007;9(4):R50.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrer-Soler L, Vazquez-Martin A, Brunet J, Menendez JA, De LR, Colomer R. An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa) -induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review). Int J Mol Med. 2007;20(1):3–10.

    PubMed  CAS  Google Scholar 

  46. Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW. c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol. 2002;157(6):929–39.

    Article  PubMed  CAS  Google Scholar 

  47. Arteaga CL. Can trastuzumab be effective against tumors with low HER2/Neu (ErbB2) receptors? J Clin Oncol. 2006;24(23):3722–5.

    Article  PubMed  CAS  Google Scholar 

  48. Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL III. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci USA. 2002;99(5):2866–71.

    Article  PubMed  CAS  Google Scholar 

  49. Qiu XB, Goldberg AL. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc Natl Acad Sci USA. 2002;99(23):14843–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bouyain S, Leahy DJ. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3. Protein Sci. 2007;16(4):654–61.

    Article  PubMed  CAS  Google Scholar 

  51. Wu X, Yen L, Irwin L, Sweeney C, Carraway KL III. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol Cell Biol. 2004;24(17):7748–57.

    Article  PubMed  CAS  Google Scholar 

  52. Cao Z, Wu X, Yen L, Sweeney C, Carraway KL III. Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol. 2007;27(6):2180–8.

    Article  PubMed  CAS  Google Scholar 

  53. Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ, et al. Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res. 2006;66(23):11279–86.

    Article  PubMed  CAS  Google Scholar 

  54. Maitra A, Wistuba II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, et al. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol. 2001;159(1):119–30.

    PubMed  CAS  Google Scholar 

  55. Sweeney C, Miller JK, Shattuck DL, Carraway KL III. ErbB receptor negative regulatory mechanisms: implications in cancer. J Mammary Gland Biol Neoplasia. 2006;11(1):89–99.

    Article  PubMed  Google Scholar 

  56. Ljuslinder I, Malmer B, Golovleva I, Thomasson M, Grankvist K, Hockenstrom T, et al. Increased copy number at 3p14 in breast cancer. Breast Cancer Res. 2005;7(5):R719–R727.

    Article  PubMed  CAS  Google Scholar 

  57. Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL III, et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem. 2004;279(45):47050–6.

    Article  PubMed  CAS  Google Scholar 

  58. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  PubMed  CAS  Google Scholar 

  59. Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL III, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol. 2007;27(5):1934–46.

    Article  PubMed  CAS  Google Scholar 

  60. Yoo JY, Wang XW, Rishi AK, Lessor T, Xia XM, Gustafson TA, et al. Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br J Cancer. 2000;82(3):683–90.

    Article  PubMed  CAS  Google Scholar 

  61. Radomski N, Jost E. Molecular cloning of a murine cDNA encoding a novel protein, p38–2G4, which varies with the cell cycle. Exp Cell Res. 1995;220(2):434–45.

    Article  PubMed  CAS  Google Scholar 

  62. Xia X, Lessor TJ, Zhang Y, Woodford N, Hamburger AW. Analysis of the expression pattern of Ebp1, an ErbB-3-binding protein. Biochem Biophys Res Commun. 2001;289(1):240–4.

    Article  PubMed  CAS  Google Scholar 

  63. Horvath BM, Magyar Z, Zhang Y, Hamburger AW, Bako L, Visser RG, et al. EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J. 2006;25(20):4909–20.

    Article  PubMed  CAS  Google Scholar 

  64. Lessor TJ, Yoo JY, Xia X, Woodford N, Hamburger AW. Ectopic expression of the ErbB-3 binding protein ebp1 inhibits growth and induces differentiation of human breast cancer cell lines. J Cell Physiol. 2000;183(3):321–9.

    Article  PubMed  CAS  Google Scholar 

  65. Lessor TJ, Hamburger AW. Regulation of the ErbB3 binding protein Ebp1 by protein kinase C. Mol Cell Endocrinol. 2001;175(1–2):185–91.

    Article  PubMed  CAS  Google Scholar 

  66. Liu Z, Ahn JY, Liu X, Ye K. Ebp1 isoforms distinctively regulate cell survival and differentiation. Proc Natl Acad Sci USA. 2006;103(29):10917–22.

    Article  PubMed  CAS  Google Scholar 

  67. Xia X, Cheng A, Lessor T, Zhang Y, Hamburger AW. Ebp1, an ErbB-3 binding protein, interacts with Rb and affects Rb transcriptional regulation. J Cell Physiol. 2001;187(2):209–17.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang YX, Woodford N, Xia XM, Hamburger AW. Repression of E2F1-mediated transcription by the ErbB3 binding protein Ebp1 involves histone deacetylases. Nucleic Acids Res. 2003;31(8):2168–77.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Y, Akinmade D, Hamburger AW. The ErbB3 binding protein Ebp1 interacts with Sin3A to repress E2F1 and AR-mediated transcription. Nucleic Acids Res. 2005;33(18):6024–33.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Y, Hamburger AW. Heregulin regulates the ability of the ErbB3-binding protein Ebp1 to bind E2F promoter elements and repress E2F-mediated transcription. J Biol Chem. 2004;279(25):26126–33.

    Article  PubMed  CAS  Google Scholar 

  71. Akinmade D, Lee M, Zhang Y, Hamburger AW. Ebp1-mediated inhibition of cell growth requires serine 363 phosphorylation. Int J Oncol. 2007;31(4):851–8.

    PubMed  CAS  Google Scholar 

  72. Squatrito M, Mancino M, Donzelli M, Areces LB, Draetta GF. EBP1 is a nucleolar growth-regulating protein that is part of pre-ribosomal ribonucleoprotein complexes. Oncogene 2004;23(25):4454–65.

    Article  PubMed  CAS  Google Scholar 

  73. Squatrito M, Mancino M, Sala L, Draetta GF. Ebp1 is a dsRNA-binding protein associated with ribosomes that modulates eIF2alpha phosphorylation. Biochem Biophys Res Commun. 2006;344(3):859–68.

    Article  PubMed  CAS  Google Scholar 

  74. Monie TP, Perrin AJ, Birtley JR, Sweeney TR, Karakasiliotis I, Chaudhry Y, et al. Structural insights into the transcriptional and translational roles of Ebp1. EMBO J 2007;26:3936–44.

    Article  PubMed  CAS  Google Scholar 

  75. Kowalinski E, Bange G, Bradatsch B, Hurt E, Wild K, Sinning I. The crystal structure of Ebp1 reveals a methionine aminopeptidase fold as binding platform for multiple interactions. FEBS Lett. 2007;581(23):4450–4.

    Article  PubMed  CAS  Google Scholar 

  76. Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem. 2000;275(46):36238–44.

    Article  PubMed  CAS  Google Scholar 

  77. Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA, et al. P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res. 2006;66(3):1694–701.

    Article  PubMed  CAS  Google Scholar 

  78. Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst. 2006;98(10):671–80.

    Article  PubMed  CAS  Google Scholar 

  79. Akinmade D, Talukder AH, Zhang Y, Luo WM, Kumar R, Hamburger AW. Phosphorylation of the ErbB3 binding protein Ebp1 by p21-activated kinase 1 in breast cancer cells. Br J Cancer 2008, in press.

  80. Ou K, Kesuma D, Ganesan K, Yu K, Soon SY, Lee SY, et al. Quantitative profiling of drug-associated proteomic alterations by combined 2-nitrobenzenesulfenyl chloride (NBS) isotope labeling and 2DE/MS identification. J Proteome Res. 2006;5(9):2194–206.

    Article  PubMed  CAS  Google Scholar 

  81. Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6(6):459–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 CA76047 and R21 088882-01 and a grant from the Department of Pathology, University of Maryland School of Medicine (to AWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne W. Hamburger.

Additional information

Grant Information NIH grants R01 CA76047 and R21 088882-01 and a grant from the Department of Pathology, University of Maryland School of Medicine (to AWH).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamburger, A.W. The Role of ErbB3 and its Binding Partners in Breast Cancer Progression and Resistance to Hormone and Tyrosine Kinase Directed Therapies. J Mammary Gland Biol Neoplasia 13, 225–233 (2008). https://doi.org/10.1007/s10911-008-9077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9077-5

Keywords

Navigation