Skip to main content

Advertisement

Log in

Dietary Factors Modifying Breast Cancer Risk and Relation to Time of Intake

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Multiple factors contribute to the development of human breast cancer. However, environmental factors, especially dietary factors, appear to have the greatest effects. Evidence obtained in epidemiological studies has been corroborated by laboratory findings. Dietary components strongly associated with breast cancer include fat and phytochemicals. A diet high in n-3 polyunsaturated fatty acid (PUFA) or monounsaturated fatty acid (MUFA) and low in n-6 PUFA is protective against breast cancer. Some phytochemicals present in fruits and vegetables are also protective. Time of intake appears to be important: lifetime protection may be achieved if one is exposed to a dietary factor that lowers breast cancer risk early in life. Synergistic and antisynergistic interactions between dietary factors can modify breast cancer risk. The available evidence suggests that breast cancer risk can be reduced by early dietary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDHA:

conjugated docosahexaenoic acid

CLA:

conjugated linoleic acid

DADS:

diallyl disulfide

DHA:

docosahexaenoic acid

DMBA:

7,12-dimethylbenz(α) anthracene

EGFR:

epidermal growth factor receptor

EPA:

eicosapentaenoic acid

ER:

estrogen receptor

LA:

linoleic acid

MNU:

N-methyl-N-nitrosourea

MUFA:

monounsaturated fatty acid

OA:

oleic acid

PCNA:

proliferating cell nuclear antigen

PgR:

progesterone receptor

PhIP:

2-amino-1-methyl- 6-phenylimidazo [4-5-b] pyridine

POH:

perillyl alcohol

PUFA:

polyunsaturated fatty acid

SDG:

secoisolariciresinol diglycoside

SFA:

saturated fatty acid

TEB:

terminal end bud

TGF:

transforming growth factor

References

  1. Colditz GA, Frazier AL. Models of breast cancer show that risk is set by events of early life: Prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev. 1995;4:567–71.

    CAS  PubMed  Google Scholar 

  2. Adami HO, Signorello LB, Trichopoulos D. Towards an understanding of breast cancer etiology. Semin. Cancer Biol. 1998;8:255–62.

    Article  CAS  PubMed  Google Scholar 

  3. Doll R, Peto R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 1981;66:1191–1308.

    CAS  PubMed  Google Scholar 

  4. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: Recent developments. Planta Med. 2003;69:589–99.

    Article  CAS  PubMed  Google Scholar 

  5. Janssens JP. How nutrition during the first few decades of life affects breast cancer risk implications for research and dietary guidelines for children. Nutr. Today 1999;34:197–209.

    Google Scholar 

  6. Carroll KK. Experimental evidence of dietary factors and hormone-dependent cancers. Cancer Res 1975;35:3374–83.

    CAS  PubMed  Google Scholar 

  7. Hunter DJ, Spiegelman D, Adami HO, Beeson L, van den Brandt PA, Folsom AR, Fraser GE, Goldbohm RA, Graham S, Howe GR, Kushi LH, Marshall JR, McDermott A, Miller AB, Speizer FE, Wolk A, Yaun S-S, Willett W. Cohort studies of fat intake and the risk of breast cancer–a pooled analysis. N. Engl. J. Med. 1996;334:356–61.

    Article  CAS  PubMed  Google Scholar 

  8. Bartsch H, Nair J, Owen RW. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers. Carcinogenesis 1999;20:2209–18.

    Article  CAS  PubMed  Google Scholar 

  9. Nobmann ED, Byers T, Lanier AP, Hankin JH, Jackson MY. The diet of Alaska Native adults: 1987–1988. Am. J. Clin. Nutr. 1992;55:1024–32.

    CAS  PubMed  Google Scholar 

  10. Parkinson AJ, Cruz AL, Heyward WL, Bulkow LR, Hall D, Barstaed L, Connor WE. Elevated concentrations of plasma ω-3 polyunsaturated fatty acids among Alaskan Eskimos. Am. J. Clin. Nutr. 1994;59:384–88.

    CAS  PubMed  Google Scholar 

  11. TamuraY, Hirai A, Terano T, Yoshida S. Clinical and epidemiological studies of ω-3 polyunsaturated fatty acids in Japan. In: Tanaka T, Okada A, editors. Nutritional support in organ failure. New York: Elsevier; 1990. p. 89–95.

    Google Scholar 

  12. Kaizer L, Boyd NF, Kriukov V, Tritchler D. Fish consumption and breast cancer risk: An ecological study. Nutr. Cancer 1989;12:61–68.

    CAS  PubMed  Google Scholar 

  13. Lanier AP, Bulkow LR, Ireland B. Cancer in Alaskan Indians, Eskimos, and Aleuts, 1959–1983: Implications for etiology and control. Public Health Rep. 1989;104:658–64.

    CAS  PubMed  Google Scholar 

  14. Wolk A, Bergstrom R, Hunter D, Willett W, Ljung H, Holmberg L, Bergkvist L, Bruce A, Adami HO. A prospective study of association of monounsaturated fat and other types of fat with risk of breast cancer. Arch. Intern. Med. 1998;158:41–45.

    Article  CAS  PubMed  Google Scholar 

  15. Taioli E, Nicolosi A, Wynder EL. Dietary habits and breast cancer: A comparative study of United States and Italian data. Nutr. Cancer 1991;16:259–65.

    CAS  PubMed  Google Scholar 

  16. Tannenbaum A, Silverstone H. Nutrition in relation to cancer. Adv. Cancer Res. 1953;1:451–601.

    CAS  PubMed  Google Scholar 

  17. Rose DP. Dietary fat, fatty acids and breast cancer. Breast Cancer 1997;4:7–16.

    PubMed  Google Scholar 

  18. Zusman I, Gurevich P, Madar Z, Nyska A, Korol D, Timar B, Zuckerman A. Tumor-promoting and tumor-protective effects of high-fat diets on chemically induced mammary cancer in rats. Anticancer. Res. 1997;17:349–56.

    CAS  PubMed  Google Scholar 

  19. Rose DP. Effects of dietary fatty acids on breast and prostate cancers: Evidence from in vitro experiments and animal studies. Am. J. Clin. Nutr. 1997;66:1513S–22S.

    CAS  PubMed  Google Scholar 

  20. Yuri T, Danbara N, Tsujita-Kyutoku M, Fukunaga K, Takada H, Inoue Y, Hada T, Tsubura A. Dietary docosahexaenoic acid suppresses N-methyl- N-nitrosourea-induced mammary carcinogenesis in rats more effectively than eicosapentaenoic acid. Nutr. Cancer 2003;45:211–17.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez MJ, Schemmel RA, Gray JI, Dugan Jr L, Sheffield LG, Welsch CW. Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: Relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 1991;12:1231–35.

    CAS  PubMed  Google Scholar 

  22. Senzaki H, Iwamoto S, Ogura E, Kiyozuka Y, Arita S, Kurebayashi J, Takada H, Hioki K, Tsubura A. Dietary effects of fatty acids on growth and metastasis of KPL-1 human breast cancer cells in vivo and in vitro. Anticancer Res. 1998;18:1621–28.

    CAS  PubMed  Google Scholar 

  23. Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastasis after the surgical excision of human breast cancer cell solid tumor growing in nude mice. Clin. Cancer Res. 1996;2:1751–56.

    CAS  PubMed  Google Scholar 

  24. Rose DP, Connolly JM. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res. 1990;50:7139–44.

    CAS  PubMed  Google Scholar 

  25. Istfan NW, Wan J, Chen ZY. Fish oil and cell proliferation kinetics in a mammary carcinoma tumor model. Adv. Exp. Med. Biol. 1995;375:149–56.

    CAS  PubMed  Google Scholar 

  26. Yamamoto D, Kiyozuka Y, Adachi Y, Takada H, Hioki K, Tsubura A. Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP-470 on human breast cancer cells. Breast Cancer Res. Treat. 1999;55:149–60.

    Article  CAS  PubMed  Google Scholar 

  27. Connolly M, Gilhooly EM, Rose DP. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr. Cancer 1999;35:44–49.

    CAS  PubMed  Google Scholar 

  28. Tsujita-Kyutoku M, Yuri T, Danbara N, Senzaki H, Kiyozuka Y, Uehara N, Takada H, Hada T, Miyazawa T, Ogawa Y, Tsubura A. Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro in vivo: Potential mechanisms of action. Breast Cancer Res. 2004;6:R291–99.

    CAS  PubMed  Google Scholar 

  29. Cohen LA, Epstein M, Pittman B, Rivenson A. The influence of different varieties of olive oil on N-methylnitrosourea (NMU)-induced mammary tumorigenesis. Anticancer Res. 2000;20:2307–12.

    CAS  PubMed  Google Scholar 

  30. Wynder EL, Cohen LA, Muscat JE, Winters B, Dwyer JT, Blackburn G. Breast cancer: Weighing the evidence for a promoting role of dietary fat. J. Natl. Cancer Inst. 1997;89:766–75.

    CAS  PubMed  Google Scholar 

  31. Kelly GS. Conjugated linoleic acid: A review. Altern. Med. Rev. 2001;6:367–82.

    CAS  PubMed  Google Scholar 

  32. Ip C, Scimeca JA, Thompson H. Effect of timing and duration of dietary conjugated linoleic acid on mammary cancer prevention. Nutr. Cancer 1995;24:241–47.

    CAS  PubMed  Google Scholar 

  33. O’Shea M, Devery R, Lawless F, Murphy J, Stanton C. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells. Anticancer Res. 2000;20:3591–3601.

    CAS  PubMed  Google Scholar 

  34. Ip C, Scimeca JA, Thompson HJ. Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer 1994;74:1050–54.

    CAS  PubMed  Google Scholar 

  35. Futakuchi M, Cheng JL, Hirose M, Kimoto N, Cho Y-M, Iwata T, Kasai M, Tokudome S, Shirai T. Inhibition of conjugated fatty acids derived from safflower or perilla oil of induction and development of mammary tumors in rats induced by 2-amino-1-methyl-6-phenylimidazo (4,5-b) pyridine (PhIP). Cancer Lett. 2002;178:131–39.

    CAS  PubMed  Google Scholar 

  36. Takata T, Minoura T, Takada H, Sakaguchi M, Yamamura M, Hioki K, Yamamoto M. Specific inhibitory effect of dietary eicosapentaenoic acid on N-nitroso-N-methylurea-induced mammary carcinogenesis in female Sprague-Dawley rats. Carcinogenesis 1990;11:2015–19.

    CAS  PubMed  Google Scholar 

  37. Shu XO, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao YT, Zheng W. Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev. 2001;10:483–88.

    CAS  PubMed  Google Scholar 

  38. Hsieh CY, Santell RC, Haslam SZ, Helferich WG. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 1998;58:3833–38.

    CAS  PubMed  Google Scholar 

  39. Shao ZM, Wu J, Shen ZZ, Barsky SH. Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res. 1998;58:4851–57.

    CAS  PubMed  Google Scholar 

  40. Nakagawa H, Yamamoto D, Kiyozuka Y, Tsuta K, Uemura Y, Hioki K, Tsutsui Y, Tsubura A. Effects of genistein and synergistic action in combination with eicosapentaenoic acid on the growth of breast cancer cell lines. J. Cancer Res. Clin. Oncol. 2000;126: 448–54.

    CAS  PubMed  Google Scholar 

  41. Cohen LA, Zhao Z, Pittman B, Scimeca JA. Effect of intact and isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. Carcinogenesis 2000;21:929–35.

    CAS  PubMed  Google Scholar 

  42. Constantinou AI, Mehta RG, Vaughan A. Inhibition of N-methyl-N-nitrosourea-induced mammary tumors in rats by the soybean isoflavones. Anticancer Res. 1996;16:3293–98.

    CAS  PubMed  Google Scholar 

  43. Thompson LU, Robb P, Serraino M, Cheung F. Mammalian lignan production from various foods. Nutr. Cancer 1991;16:43–52.

    CAS  PubMed  Google Scholar 

  44. Adlercreutz H, Fotsis T, Heikkinen R, Dwyer JT, Woods M, Goldin BR. Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet 1982;11:1295–98.

    Google Scholar 

  45. Pietinen P, Stumpf K, Mannisto S, Kataja B, Uusitupa M, Adlercreutz H. Serum enterolactone and risk of breast cancer: A case-control study in eastern Finland. Cancer Epidemiol Biomark Prev. 2001;10:339–44.

    CAS  Google Scholar 

  46. Kilkkinen A, Virtamo J, Vartiainen E, Sankila R, Virtanen MJ, Adlercreutz H, Pietinen P. Serum enterolactone concentration is not associated with breast cancer risk in a nested case-control study. Int. J. Cancer 2004;108:277–80.

    CAS  PubMed  Google Scholar 

  47. Thompson LU. Experimental studies on lignans and cancer. Baillieres Clin. Endocrinol. Metab. 1998;12:691–705.

    CAS  PubMed  Google Scholar 

  48. Chen J, Stavro PM, Thompson LU. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer 2002;43:187–92.

    CAS  PubMed  Google Scholar 

  49. Dabrosin C, Chen J, Wang L, Thompson LU. Flaxseed inhibits metastasis and decreases extracellular vascular endothelial growth factor in human breast cancer xenografts. Cancer Lett. 2002;185:31–37.

    CAS  PubMed  Google Scholar 

  50. Saarinen NM, Huovinen R, Wärri A, Mäkelä S I, Valentín-Blasini L, Sjöholm R, Ämmälä J, Lehtilä R, Eckerman C, Collan YU, Santti RS. Enterolactone inhibits the growth of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in the rat. Mol. Cancer Ther. 2002;1:869–76.

    CAS  PubMed  Google Scholar 

  51. Welshons WV, Murphy CS, Koch R, Calaf G, Jordan VC. Stimulation of breast cancer cells in vitro by the environmental estrogen enterolactone and the phytoestrogen equol. Breast Cancer Res. Treat. 1987;10:169–75.

    CAS  PubMed  Google Scholar 

  52. Wang C, Kurzer MS. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer 1997;28:236–47.

    CAS  PubMed  Google Scholar 

  53. Sung MK, Lautens M, Thompson LU. Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer Res. 1998;18:1405–08.

    CAS  PubMed  Google Scholar 

  54. Lin X, Switzer BR, Demark-Wahnefried W. Effect of mammalian lignans on the growth of prostate cancer cell lines. Anticancer Res. 2001;21:3995–99.

    CAS  PubMed  Google Scholar 

  55. Levi F, La Vecchia C, Gulie C, Negri E. Dietary factors and breast cancer risk in Vaud, Switzerland. Nutr. Cancer 1993;19:327–35.

    CAS  PubMed  Google Scholar 

  56. Challier B, Perarnau JM, Viel JF. Garlic, onion and cereal fibre as protective factors for breast cancer: A French case-control study. Eur. J. Epidemiol. 1998;14:737–47.

    CAS  PubMed  Google Scholar 

  57. Dorant E, van den Brandt PA, Goldbohm RA. Allium vegetable consumption, garlic supplement intake, and female breast carcinoma incidence. Breast Cancer Res. Treat. 1995;33:163–70.

    CAS  PubMed  Google Scholar 

  58. Liu J, Lin RI, Milner JA. Inhibition of 7,12-dimethyl-benz[α]anthracene-induced mammary tumors and DNA adducts by garlic powder. Carcinogenesis 1992;13:1847–51.

    CAS  PubMed  Google Scholar 

  59. Block E. The chemistry of garlic and onions. Sci. Am. 1985;252:114–19.

    CAS  PubMed  Google Scholar 

  60. Schaffer EM, Liu JZ, Green J, Dangler CA, Milner JA. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis. Cancer Lett. 1996;102:199–04.

    CAS  PubMed  Google Scholar 

  61. Suzui N, Sugie S, Rahman KM, Ohnishi M, Yoshimi N, Wakabayashi K, Mori H. Inhibitory effects of diallyl disulfide or aspirin on 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine-induced mammary carcinogenesis in rats. Jpn. J. Cancer Res. 1997;88:705–11.

    CAS  PubMed  Google Scholar 

  62. Cohen LA, Zhao Z, Pittman B, Lubet R. S-Allylcysteine, a garlic constituent, fails to inhibit N-methylnitrosourea-induced rat mammary tumorigenesis. Nutr. Cancer 1999;35:58–63.

    CAS  PubMed  Google Scholar 

  63. Sundaram SG, Milner JA. Impact of organosulfur compounds in garlic on canine mammary tumor cells in culture. Cancer Lett. 1993;74:85–90.

    CAS  PubMed  Google Scholar 

  64. Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Hioki K, Tsubura A. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 2001;22:891–97.

    CAS  PubMed  Google Scholar 

  65. Schaffer EM, Liu JZ, Milner JA. Garlic powder and allyl sulfur compounds enhance the ability of dietary selenite to inhibit 7,12-dimethylbenz[α]anthracene-induced mammary DNA adducts. Nutr. Cancer 1997;27:162–68.

    CAS  PubMed  Google Scholar 

  66. Knowles LM, Milner JA. Depressed p34cdc2 kinase activity and G2/M phase arrest induced by diallyl disulfide in HCT-15 cells. Nutr. Cancer 1998;30:169–74.

    CAS  PubMed  Google Scholar 

  67. Crowell L, Siar Ayoubi A, Burke YD. Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. Adv. Exp. Med. Biol. 1996;401:131–36.

    CAS  PubMed  Google Scholar 

  68. Elson CE, Maltzman TH, Boston JL, Tanner MA, Gould MN. Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis 1988;9:331–32.

    CAS  PubMed  Google Scholar 

  69. Maltzman TH, Hurt LM, Elson CE, Tanner MA, Gould MN. The prevention of nitrosomethylurea-induced mammary tumors by d-limonene and orange oil. Carcinogenesis 1989;10:781–83.

    CAS  PubMed  Google Scholar 

  70. Haag JD, Lindstrom MJ, Gould MN. Limonene-induced regression of mammary carcinomas. Cancer Res. 1992;52:4021–26.

    CAS  PubMed  Google Scholar 

  71. Haag JD, Gould MN. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother. Pharmacol. 1994;34:477–83.

    CAS  PubMed  Google Scholar 

  72. Yuri T, Danbara N, Tsujita-Kyutoku M, Kiyozuka Y, Senzaki H, Shikata N, Kanzaki H, Tsubura A. Perillyl alcohol inhibits human breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Treat. 2004;84:251–60.

    CAS  PubMed  Google Scholar 

  73. Belanger JT. Perillyl alcohol: Applications in oncology. Altern. Med. Rev. 1998;3:448–57.

    CAS  PubMed  Google Scholar 

  74. Bardon S, Picard K, Martel P. Monoterpenes inhibit cell growth, cell cycle progression, and cyclin D1 expression in human breast cancer cell lines. Nutr. Cancer 1998;32:1–7.

    CAS  PubMed  Google Scholar 

  75. Ariazi EA, Satomi Y, Ellis MJ, Haag JD, Shi W, Sattler CA, Gould MN. Activation of the transforming growth factor β signaling pathway and induction of cytostasis and apoptosis in mammary carcinomas treated with the anticancer agent perillyl alcohol. Cancer Res. 1999;59:1917–28.

    CAS  PubMed  Google Scholar 

  76. Crowell L, Chang RR, Ren Z, Elson CE, Gould MN. Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J. Biol. Chem. 1991;266:17679–85.

    CAS  PubMed  Google Scholar 

  77. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218–20.

    CAS  PubMed  Google Scholar 

  78. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. USA. 1997;94:14138–43.

    CAS  PubMed  Google Scholar 

  79. Bhat KPL, Lantvit D, Christov K, Mehta RG, Moon RC, Pezzuto JM. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res. 2001;61:7456–63.

    CAS  PubMed  Google Scholar 

  80. Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-κB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res. 2002;62:4945–54.

    CAS  PubMed  Google Scholar 

  81. Nakagawa H, Kiyozuka Y, Uemura Y, Senzaki H, Shikata N, Hioki K, Tsubura A. Resveratrol inhibits human breast cancer cell growth and may mitigate the effect of linoleic acid, a potent breast cancer cell stimulator. J. Cancer Res. Clin. Oncol. 2001;127:258–64.

    CAS  PubMed  Google Scholar 

  82. Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res. 2002;8:893–903.

    CAS  PubMed  Google Scholar 

  83. Kelsey L, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol. Rev. 1993;15:36–47.

    CAS  PubMed  Google Scholar 

  84. Yang J, Yoshizawa K, Nandi S, Tsubura A. Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis 1999;20:623–8.

    PubMed  Google Scholar 

  85. Rajkumar L, Guzman RC, Yang J, Thordarson G, Talamantes F, Nandi S. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments. Breast Cancer Res. 2004;6:R31–7.

    CAS  PubMed  Google Scholar 

  86. Weiss HA, Potischman NA, Brinton LA, Brogan D, Coates RJ, Gammon MD, Malone KE, Schoenberg JB. Prenatal and perinatal risk factors for breast cancer in young women. Epidemiology 1997;8:181–7.

    CAS  PubMed  Google Scholar 

  87. Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A. Effects of maternal xenoestrogen exposure on the development of reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 2004;18:803–11.

    CAS  PubMed  Google Scholar 

  88. Hilakivi-Clarke L, Clarke R, Lippman M. The influence of maternal diet on breast cancer risk among female offspring. Nutrition 1999;15:392–401.

    CAS  PubMed  Google Scholar 

  89. Hilakivi-Clarke L, Cho E, Cabanes A, DeAssis S, Olivo S, Helferich W, Lippman ME, Clarke R. Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin. Cancer Res. 2002;8:3601–10.

    CAS  PubMed  Google Scholar 

  90. Stark AH, Kossoy G, Zusman I, Yarden G, Madar Z. Olive oil consumption during pregnancy and lactation in rats influences mammary cancer development in female offspring. Nutr. Cancer 2003;46:59–65.

    CAS  PubMed  Google Scholar 

  91. Russo J, Lynch H, Russo IH. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J. 2001;7:278–91.

    CAS  PubMed  Google Scholar 

  92. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Clarke R, Lippman ME. Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J. Natl. Cancer Inst. 1996;88:1821–27.

    CAS  PubMed  Google Scholar 

  93. Thompson H, Zhu Z, Banni S, Darcy K, Loftus T, Ip C. Morphological and biochemical status of the mammary gland as influenced by conjugated linoleic acid: Implication for a reduction in mammary cancer risk. Cancer Res. 1997;57:5067–72.

    CAS  PubMed  Google Scholar 

  94. Lamartiniere CA, Zhao YX, Fritz WA. Genistein: Mammary cancer chemoprevention, in vivo mechanisms of action, potential for toxicity, and bioavailability in rats. J. Women’s Cancer 2000;2:11–19.

    Google Scholar 

  95. Pei R-J, Sato M, Yuri T, Danbara N, Nikaido Y, Tsubura A. Effect of prenatal and prepubertal genistein exposure on N-methyl-N-nitrosourea-induced mammary tumorigenesis in female Sprague-Dawley rats. In Vivo 2003;17:349–58.

    Google Scholar 

  96. Sato M, Pei R-J, Yuri T, Danbara N, Nakane Y, Tsubura A. Prepubertal resveratrol exposure accelerates N-methyl-N-nitrosourea-induced mammary carcinoma in female Sprague-Dawley rats. Cancer Lett. 2003;202:137–45.

    CAS  PubMed  Google Scholar 

  97. Juan ME, Vinardell MP, Planas JM. The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. J. Nutr. 2002;132:257–60.

    CAS  PubMed  Google Scholar 

  98. Tou JCL, Chen J, Thompson LU. Flaxseed and its lignan precursor, secoisolariciresinol diglycoside, affect pregnancy outcome and reproductive development in rats. J. Nutr. 1998;128:1861–8.

    CAS  PubMed  Google Scholar 

  99. Ward WE, Jiang FO, Thompson LU. Exposure to flaxseed or purified lignan during lactation influences rat mammary gland structures. Nutr. Cancer 2000;37:187–92.

    CAS  PubMed  Google Scholar 

  100. Tou JCL, Thompson LU. Exposure to flaxseed or its lignan component during different developmental stages influences rat mammary gland structures. Carcinogenesis 1999;20:1831–5.

    CAS  PubMed  Google Scholar 

  101. Chen J, Tan KP, Ward WE, Thompson LU. Exposure to flaxseed or its purified lignan during suckling inhibits chemically induced rat mammary tumorigenesis. Exp. Biol. Med. 2003;228:951–8.

    CAS  Google Scholar 

  102. Hilakivi-Clarke L, Cho E, Onojafe I, Raygada M, Clarke R. Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol. Rep. 1999;6:1089–95.

    CAS  PubMed  Google Scholar 

  103. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Skaar T, Russo I, Clarke R. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br. J. Cancer 1999;80:1682–8.

    CAS  PubMed  Google Scholar 

  104. Nikaido Y, Yoshizawa K, Pei R-J, Yuri T, Danbara N, Hatano T, Tsubura A. Prepubertal zearalenone exposure suppresses N-methyl-N-nitrosourea-induced mammary tumorigenesis but causes severe endocrine disruption in female Sprague-Dawley rats. Nutr. Cancer 2003;47:164–70.

    CAS  PubMed  Google Scholar 

  105. Le Guevel R, Pakdel F. Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods. Hum. Reprod. 2001;16:1030–6.

    CAS  PubMed  Google Scholar 

  106. Yoshida H, Fukunishi R, Kato Y, Matsumoto K. Progesterone-stimulated growth of mammary carcinomas induced by 7,12-dimethylbenz [α] anthracene in neonatally androgenized rats. J. Natl. Cancer Inst. 1980;65:823–8.

    CAS  PubMed  Google Scholar 

  107. Kuiper-Goodman T. Uncertainties in the risk assessment of three mycotoxins: Aflatoxin, ochratoxin, and zearalenone. Can. J. Physiol. Pharmacol. 1990;68:1017–24.

    CAS  PubMed  Google Scholar 

  108. Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 2001;22:1111–17.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airo Tsubura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsubura, A., Uehara, N., Kiyozuka, Y. et al. Dietary Factors Modifying Breast Cancer Risk and Relation to Time of Intake. J Mammary Gland Biol Neoplasia 10, 87–100 (2005). https://doi.org/10.1007/s10911-005-2543-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-2543-4

Navigation