Skip to main content
Log in

Mechanism of inhibition of mitochondrial ATP synthase by 17β−Estradiol

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling (“slipping”) of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and VFCCP (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and Volig were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the Fo component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F1-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu RM, Santos DL, Moreno AJM (2000) Effects of carvedilol and its analog BM-910228 on mitochondrial function and oxidative stress. J Pharmacol Exp Ther 295:1022–1030

    CAS  Google Scholar 

  • Alberty RA (1969) J Biol Chem 244:3290–3302

    CAS  Google Scholar 

  • Álvarez-Delgado C, Mendoza-Rodríguez A, Picazo O, Cerbón M (2010) Different expression of alpha and beta mitochondrial estrogen receptors in the aging rat brain: interaction with respiratory complex V. Exp Gerontol 45:580–585

    Article  Google Scholar 

  • Arnold S, Beyer C (2009) J Neurochem 110:1–10

    Article  CAS  Google Scholar 

  • Azzi A, Santato M (1970) Energy dependent interaction of oligomycin and dicyclo hexylcarbodiimide with the mitochondrial membrane. FEBS Lett 7:135–138

    Article  CAS  Google Scholar 

  • Borrás C, Gambini J, López-Grueso R, Pallardó F, Vina J (2010) Biochim Biophys Acta 1802:205–211

    Article  Google Scholar 

  • Bouaziz N, Redon M, Quere L, Remacle J, Michiels C (2002) ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions. Eur J Pharmacol 441:35–45

    Article  CAS  Google Scholar 

  • Boyer PD (1997) The ATP synthase – a splendid molecular machine. Ann Rev Biochem 66:717–749

    Article  CAS  Google Scholar 

  • Cammarata PR, Chu S, Moor A, Wang Z, Yang SH, Simpkins JW (2004) Subcellular distribution of native estrogen receptor alpha and beta subtypes in cultured human lens epithelial cells. Exp Eye Res 78:861–871

    Article  CAS  Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  • Chen JQ, Delannoy M, Cooke C, Yager JD (2004) Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab 286:E1011–E1022

    Article  CAS  Google Scholar 

  • Felty Q, Roy D (2005) Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 4:1–18

    Article  Google Scholar 

  • Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (1999) ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions. FEBS Lett 445:409–414

    Article  CAS  Google Scholar 

  • Feniouk BA, Mulkidjanian AY, Junge W (2005) Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim Biophys Acta 1706:184–194

    Article  CAS  Google Scholar 

  • Gazotti P, Malmstron K, Crompton M (1979) In: Carafoli E, Semenza G (eds) Membrane biochemistry. A laboratory manual on transport and bioenergetics. Springer-Verlag New York. Inc, New York, pp 62–69

    Chapter  Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) Proc Natl Acad Sci USA 104:13632–13637

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill NCJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nielson J (2008) Endocrinology 149:3167–3175

    Article  CAS  Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    Article  CAS  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake V (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  Google Scholar 

  • Kipp JL, Ramirez VD (2001) Effect of estradiol, diethylstilbestrol, and resveratrol on F0F1-ATPase activity from mitochondrial preparations of rat heart, liver, and brain. Endocrine 15:165–175

    Article  CAS  Google Scholar 

  • Levin ER (2001) Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol 91:1860–1867

    CAS  Google Scholar 

  • Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56

    Article  Google Scholar 

  • Masini A, Ceccarelli-Stanzani D, Muscatello U (1984) An investigation on the effect of oligomycin on state-4 respiration in isolated rat-liver mitochondria. Biochim Biophys Acta 767:130–137

    Article  CAS  Google Scholar 

  • Massart F, Paolini S, Piscitelli E, Brandi ML, Solaini G (2002) Dose-dependent inhibition of mitochondrial ATP synthase by 17 beta-estradiol. Gynecol Endocrinol 16:373–377

    CAS  Google Scholar 

  • Mattson MP, Robison N, Guo Q (1997) Estrogens stabilize mitochondrial function and protect neural cells against the pro-apoptotic action of mutant presenilin-1. Neuroreport 8:3817–3821

    Article  CAS  Google Scholar 

  • Moats RK, Ramirez VD (1998) Rapid uptake and binding of estradiol-17beta-6-(O-carboxymethyl)oxime:125I-labeled BSA by female rat liver. Biol Reprod 58:531–538

    Article  CAS  Google Scholar 

  • Moreira PI, Custódio J, Moreno AJ, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281:10143–10152

    Article  CAS  Google Scholar 

  • Moreira PI, Custódio JBA, Nunes E, Oliveira PJ, Moreno A, Seiça R, Oliveira CR, Santos MS (2011) Mitochondria from distinct tissues are differently affected by 17β-estradiol and tamoxifen. J Steroid Biochem Mol Biol 123:8–16

    Article  CAS  Google Scholar 

  • Moreno AJ, Madeira VM (1991) Mitochondrial bioenergetics as affected by DDT. Biochim Biophys Acta 1060:166–174

    Article  CAS  Google Scholar 

  • Muratsugu M, Kamo N, Kurihara K, Kobatake Y (1977) Selective electrode for dibenzyl dimethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim Biophys Acta 464:613–619

    Article  CAS  Google Scholar 

  • Nadal-Caselhas A, Proenza AM, Lladó I, Gianotti M (2011) Steroids 76:1051–1056

    Article  Google Scholar 

  • Nilsen J, Brinton RD (2004) Mitochondria as therapeutic targets of estrogen action in the central nervous system. Curr Drugs Targets CNS Neurol Disord 3:297–313

    Article  CAS  Google Scholar 

  • Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7:7–74

    Article  Google Scholar 

  • Nishimura M, Ito B, Chance B (1962) Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation. Biochim Biophys Acta 59:177–182

    Article  CAS  Google Scholar 

  • Pedram A, Razandi M, Wallace DC, Levin ER (2006) Mol Biol Cell 17:2125–2137

    Article  CAS  Google Scholar 

  • Petrovic S, Demajo M, Horvat A (2005) Estradiol affects calcium transport across mitochondrial membrane in different brain regions. Ann N Y Acad Sci 1048:341–343

    Article  CAS  Google Scholar 

  • Petrovic S, Velickovic N, Stanojevic I, Milosevic M, Drakulic D, Stanojlovic M, Horvat A (2011) Inhibition of mitochondrial Na+-dependent Ca2+ efflux by 17β-estradiol in the rat hippocampus. Neuroscience 192:195–204

    Article  CAS  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493

    Article  CAS  Google Scholar 

  • Singh M, Sétáló G Jr, Guan X, Warren M, Toran-Allerand CD (1999) Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J Neurochem 19:1179–1188

    CAS  Google Scholar 

  • Tsou CS, van Dam K (1969) Biochim Biophys Acta 172:174–176

    Article  CAS  Google Scholar 

  • Turina P, Giovannini F, Gubellini BA, Melandri BA (2004) Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus. Biochemistry 43:11126–11134

    Article  CAS  Google Scholar 

  • Turina P, Rebecchi A, D’Alessandro M, Anefors S, Melandri BA (2006) Modulation of proton pumping efficiency in bacterial ATP synthases. Biochim Biophys Acta 1757:320–325

    Article  CAS  Google Scholar 

  • Walker JE, Dickson VK (2006) The peripheral stalk of the mitochondrial ATP synthase. Biochim Biophys Acta 1757:286–296

    Article  CAS  Google Scholar 

  • Wang J, Green PS, Simpkins JW (2001) Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J Neurochem 77:804–811

    Article  CAS  Google Scholar 

  • Weber J (2007) ATP synthase—the structure of the stator stalk. Trends Biochem Sci 32:53–56

    Article  CAS  Google Scholar 

  • Yao J, Brinton RD (2012) Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer’s Disease. Adv Pharmacol 64:327–371

    Article  CAS  Google Scholar 

  • Zheng J, Ramirez VD (1999a) Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase activity by estrogens: comparison with Na+, K+ -ATPase of porcine cortex. Eur J Pharmacol 368:95–102

    Article  CAS  Google Scholar 

  • Zheng J, Ramirez VD (1999b) Piceatannol, a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity by targeting the F1 complex. Biochem Biophys Res Commun 261:499–503

    Article  CAS  Google Scholar 

  • Zheng J, Ramirez VD (1999c) Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP), a subunit of mitochondrial F0F1-ATP synthase/ATPase. J Steroid Biochem Mol Biol 68:65–75

    Article  CAS  Google Scholar 

  • Zheng J, Ramirez VD (2000) Br J Pharmacol 130:1115–1123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António J. M. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, A.J.M., Moreira, P.I., Custódio, J.B.A. et al. Mechanism of inhibition of mitochondrial ATP synthase by 17β−Estradiol. J Bioenerg Biomembr 45, 261–270 (2013). https://doi.org/10.1007/s10863-012-9497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9497-1

Keywords

Navigation