Skip to main content
Log in

3-bromopyruvate: Targets and outcomes

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The pyruvate mimetic 3-bromopyruvate (3-BP) is generally presented as an inhibitor of glycolysis and has shown remarkable efficacy in not only preventing tumor growth, but even eradicating existant tumors in animal studies. We here review reported molecular targets of 3-BP and suggest that the very range of possible targets, which pertain to the altered energy metabolism of tumor cells, contributes both to the efficacy and the tumor specificity of the drug. Its in vivo efficacy is suggested to be due to a combination of glycolytic and mitochondrial targets, as well as to secondary effects affecting the tumor microenvironment. The cytotoxicity of 3-BP is less due to pyruvate mimicry than to alkylation of, e.g., key thiols. Alkylation of DNA/RNA has not been reported. More research is warranted to better understand the pharmacokinetics of 3-BP, and its potential toxic effects to normal cells, in particular those that are highly ATP-/mitochondrion-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apfel MA, Ikeda BH, Speckhard DC, Frey PA (1984) Escherichia coli pyruvate dehydrogenase complex. Thiamin pyrophosphate-dependent inactivation by 3-bromopyruvate. J Biol Chem 259:2905–2909

    CAS  Google Scholar 

  • Banas T, Gontero B, Drews VL, Johnson SL, Marcus F, Kemp RG (1988) Reactivity of the thiol groups of Escherichia coli phosphofructo-1-kinase. Biochim Biophys Acta 957:178–184

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    Article  CAS  Google Scholar 

  • Dell’Antone P (2009) Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med Chem 5:491–496

    Article  Google Scholar 

  • Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF (2010a) 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 11:510–517

    Article  CAS  Google Scholar 

  • da Silva AP Pereira, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A (2009) Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J 417:717–726

    Article  Google Scholar 

  • Dell’Antone P (2006) Inactivation of H+-vacuolar ATPase by the energy blocker 3-bromopyruvate, a new antitumour agent. Life Sci 79:2049–2055

    Article  Google Scholar 

  • Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    CAS  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Article  CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  CAS  Google Scholar 

  • Ramsay EE, Hogg PJ, Dilda PJ (2011) Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 28:2731–2744

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB (2003) Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10:1535–1551

    Article  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D: VDAC, a multi-functional mitochondrial protein as a pharmacological target, Mitochondrion 2011,

  • Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta 1787:553–560

    Article  CAS  Google Scholar 

  • Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM, Kim SJ, Park JH (2008) Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg Biomembr 40:607–618

    Article  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  CAS  Google Scholar 

  • Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843

    Article  CAS  Google Scholar 

  • Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    Article  CAS  Google Scholar 

  • Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579

    Article  CAS  Google Scholar 

  • Penso J, Beitner R (1998) Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol 342:113–117

    Article  CAS  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830

    Article  CAS  Google Scholar 

  • Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27:4636–4643

    Article  CAS  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    Article  CAS  Google Scholar 

  • Shulga N, Wilson-Smith R, Pastorino JG (2009) Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism. Cell Cycle 8:3355–3364

    Article  CAS  Google Scholar 

  • Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S (2007) Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int J Cancer 120:175–180

    Article  CAS  Google Scholar 

  • Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Molecular Oncology 2:94–101

    Article  Google Scholar 

  • Aram L, Geula S, Arbel N, Shoshan-Barmatz V (2010) VDAC1 cysteine residues: topology and function in channel activity and apoptosis. Biochem J 427:445–454

    Article  CAS  Google Scholar 

  • Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490

    Article  CAS  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  Google Scholar 

  • Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G (2000) Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19:307–314

    Article  CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29:4909–4918

    CAS  Google Scholar 

  • Jones AR, Porter KE, Dobbie MS (1996) Renal and spermatozoal toxicity of alpha-bromohydrin, 3-bromolactate and 3-bromopyruvate. J Appl Toxicol 16:57–63

    Article  CAS  Google Scholar 

  • Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95:45–52

    Article  CAS  Google Scholar 

  • Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509

    CAS  Google Scholar 

  • Yun SL, Suelter CH (1979) Modification of yeast pyruvate kinase by an active site-directed reagent, bromopyruvate. J Biol Chem 254:1811–1815

    CAS  Google Scholar 

  • Acan NL, Ozer N (2001) Modification of human erythrocyte pyruvate kinase by an active site-directed reagent: bromopyruvate. J Enzyme Inhib 16:457–464

    Article  CAS  Google Scholar 

  • Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Moreno-Sanchez R (2010) Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31:29–59

    Article  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  Google Scholar 

  • Pan JG, Mak TW: Metabolic targeting as an anticancer strategy: dawn of a new era?, Sci STKE 2007, 2007:pe14

  • Papandreou I, Goliasova T, Denko NC (2011) Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm? Int J Cancer 128:1001–1008

    Article  CAS  Google Scholar 

  • Korotchkina LG (1999) Showkat Ali M, Patel MS: Involvement of alpha-cysteine-62 and beta-tryptophan-135 in human pyruvate dehydrogenase catalysis. Arch Biochem Biophys 369:277–287

    Article  CAS  Google Scholar 

  • Kumar V, Kota V, Shivaji S (2008) Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol Reprod 79:190–199

    Article  CAS  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  Google Scholar 

  • Neuzil J, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF, Scheffler I, Ralph SJ (2007) Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39:65–72

    Article  CAS  Google Scholar 

  • Qin JZ, Xin H, Nickoloff BJ (2010) 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun 396:495–500

    Article  CAS  Google Scholar 

  • Macchioni L, Davidescu M, Sciaccaluga M, Marchetti C, Migliorati G, Coaccioli S, Roberti R, Corazzi L, Castigli E (2011) Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells. J Bioenerg Biomembr 43:507–518

    Article  CAS  Google Scholar 

  • White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316

    Article  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Vali M (2010b) 3-Bromopyruvate induces endoplasmic reticulum stress, overcomes autophagy and causes apoptosis in human HCC cell lines. Anticancer Res 30:923–935

    CAS  Google Scholar 

  • Zhao H, Tanaka T, Halicka HD, Traganos F, Zarebski M, Dobrucki J, Darzynkiewicz Z (2007) Cytometric assessment of DNA damage by exogenous and endogenous oxidants reports aging-related processes. Cytometry A 71:905–914

    Google Scholar 

  • Sanchez-Arago M, Cuezva JM (2011) The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med 9:19

    Article  CAS  Google Scholar 

  • Nakano A, Tsuji D, Miki H, Cui Q, Sayed SM, Ikegame A, Oda A, Amou H, Nakamura S, Harada T, Fujii S, Kagawa K, Takeuchi K, Sakai A, Ozaki S, Okano K, Nakamura T, Itoh K, Matsumoto T, Abe M (2011) Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells. PLoS One 6:e27222

    Article  CAS  Google Scholar 

  • Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z: Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells, Cancer Res 2011

  • Cao X, Jia G, Zhang T, Yang M, Wang B, Wassenaar PA, Cheng H, Knopp MV, Sun D (2008) Non-invasive MRI tumor imaging and synergistic anticancer effect of HSP90 inhibitor and glycolysis inhibitor in RIP1-Tag2 transgenic pancreatic tumor model. Cancer Chemother Pharmacol 62:985–994

    Article  CAS  Google Scholar 

  • Pinheiro C, Longatto-Filho A, Pereira SM, Etlinger D, Moreira MA, Jube LF, Queiroz GS, Schmitt F, Baltazar F (2009) Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma. Dis Markers 26:97–103

    CAS  Google Scholar 

  • Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F (2010) Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol 2010:427694

    Article  Google Scholar 

  • Chiche J, Brahimi-Horn MC, Pouyssegur J: Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer, J Cell Mol Med 2009

  • Le Floch R, Chiche J, Marchiq I, Naiken T, Ilk K, Murray CM, Critchlow SE, Roux D, Simon MP, Pouyssegur J (2011) CD147 subunit of lactate/H + symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A 108:16663–16668

    Article  Google Scholar 

  • Boidot R, Vegran F, Meulle A, Lebreton A, Dessy C, Sonveaux P, Lizard-Nacol S, Feron O: Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors, Cancer Res 2011

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    Article  CAS  Google Scholar 

  • Liapi E, Geschwind JF, Vali M, Khwaja AA, Prieto-Ventura V, Buijs M, Vossen JA, Ganapathy S, Wahl RL (2011) Assessment of tumoricidal efficacy and response to treatment with 18 F-FDG PET/CT after intraarterial infusion with the antiglycolytic agent 3-bromopyruvate in the VX2 model of liver tumor. J Nucl Med 52:225–230

    Article  Google Scholar 

  • Vali M, Vossen JA, Buijs M, Engles JM, Liapi E, Ventura VP, Khwaja A, Acha-Ngwodo O, Shanmugasundaram G, Syed L, Wahl RL, Geschwind JF (2008) Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J Pharmacol Exp Ther 327:32–37

    Article  CAS  Google Scholar 

  • Chang JM, Chung JW, Jae HJ, Eh H, Son KR, Lee KC, Park JH (2007) Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: In vivo investigation in normal rabbit model. Acad Radiol 14:85–92

    Article  Google Scholar 

  • Buijs M, Vossen JA, Geschwind JF, Ishimori T, Engles JM, Acha-Ngwodo O, Wahl RL, Vali M (2009) Specificity of the anti-glycolytic activity of 3-bromopyruvate confirmed by FDG uptake in a rat model of breast cancer. Invest New Drugs 27:120–123

    Article  CAS  Google Scholar 

  • Schaefer NG, Geschwind JF, Engles J, Buchanan JW, Wahl RL (2012) Systemic administration of 3-bromopyruvate in treating disseminated aggressive lymphoma. Transl Res 159:51–57

    Article  CAS  Google Scholar 

  • Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P: Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells, Int J Biochem Cell Biol 2010

  • McCarty MF, Whitaker J (2010) Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev 15:264–272

    Google Scholar 

  • Goodisman J, Hagrman D, Tacka KA, Souid AK (2006) Analysis of cytotoxicities of platinum compounds. Cancer Chemother Pharmacol 57:257–267

    Article  CAS  Google Scholar 

  • Custodio JB, Cardoso CM, Santos MS, Almeida LM, Vicente JA, Fernandes MA (2009) Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents. Toxicology 259:18–24

    Article  CAS  Google Scholar 

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167

    Article  CAS  Google Scholar 

  • Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369

    Article  Google Scholar 

  • Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649

    CAS  Google Scholar 

  • Santos NA, Catao CS, Martins NM, Curti C, Bianchi ML, Santos AC (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Shoshan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoshan, M.C. 3-bromopyruvate: Targets and outcomes. J Bioenerg Biomembr 44, 7–15 (2012). https://doi.org/10.1007/s10863-012-9419-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9419-2

Keywords

Navigation