Skip to main content
Log in

Alteration of mitochondrial function and cell sensitization to death

  • Mini Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Stimulation of cell death is a powerful instrument in the organism’s struggle with cancer. Apoptosis represents one mode of cell death. However, in a variety of tumor cells proapoptotic mechanisms are downregulated, or not properly activated, whereas antiapoptotic mechanisms are upregulated. Mitochondria are known as key players in the regulation of apoptotic pathways. Specifically, permeabilization of the mitochondrial outer membrane and subsequent release of proapoptotic proteins from the intermembrane space are viewed as decisive events in the initiation and/or execution of apoptosis. Disruption of mitochondrial functions by anticancer drugs, which induce oxidative stress, inhibit mitochondrial respiration, or uncouple oxidative phosphorylation, can sensitize mitochondria in these cells and facilitate outer membrane permeabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Nasser I, Crompton M (1986) Biochem J 239:19–29

    Google Scholar 

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Biochem J 345:271–278

    Google Scholar 

  • Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M (2005) J Mol Cell Cardiol 38:367–374

    Google Scholar 

  • Asoh S, Mori T, Hayashi J, Ohta S (1996) J Biochem 120:600–607

    Google Scholar 

  • Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemastersm JJ (1998) Mol Cell Biol 18:6353–6364

    Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Immunol Today 15:7–10

    Google Scholar 

  • Cadenas E, Boveris A (1980) Biochem J 188:31–37

    Google Scholar 

  • Cai J, Yang J, Jones DP (1998) Biochim Biophys Acta 1366:139–149

    Google Scholar 

  • Colombini M (1983) J Membr Biol 74:115–121

    Google Scholar 

  • Coultas L, Strasser A (2003) Semin Cancer Biol 13:115–123

    Google Scholar 

  • Crompton M (1999) Biochem J 341:233–249

    Google Scholar 

  • Droge W (2002) Physiol Rev 82:47–95

    Google Scholar 

  • Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 11:300–312

    Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Mol Cell Biol 20:929–935

    Google Scholar 

  • Evtodienko YV, Teplova VV, Azarashvily TS, Kudin A, Prusakova O, Virtanen I, Saris NEL (1999) Mol Cell Biochem 194:251–256

    Google Scholar 

  • Festjens N, van Gurp M, van Loo G, Saelens X, Vandenabeele P (2004) Acta Haematol 111:7–27

    Google Scholar 

  • Galitovsky VE, Gogvadze VG (1998) Biochemistry (Mosc) 63:1374–1377

    Google Scholar 

  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Cell 122:221–233

    Google Scholar 

  • Gleiss B, Gogvadze V, Orrenius S, Fadeel B (2002) FEBS Lett 519:153–158

    Google Scholar 

  • Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S (2001) J Biol Chem 276:19066–19071

    Google Scholar 

  • Green DR, Reed JC (1998) Science 281:1309–1312

    Google Scholar 

  • Halestrap AP (2006a) Circ Res 99:10–12

    Google Scholar 

  • Halestrap AP (2006b) Biochem Soc Trans 34:232–237

    Google Scholar 

  • Hampton MB, Orrenius S (1998) Toxicol Lett 102–103:355–358

  • Hanahan D, Weinberg RA (2000) Cell 7 100:57–70

    Google Scholar 

  • Haworth RA, Hunter DR (1979) Arch Biochem Biophys 195:460–467

    Google Scholar 

  • Hunter DR, Haworth RA (1979a) Arch Biochem Biophys 195:453–459

  • Hunter DR, Haworth RA (1979b) Arch Biochem Biophys 195:468–477

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232

    Google Scholar 

  • Kim YJ, Lee WS, Ip C, Chae HZ, Park EM, Park YM (2006) Cancer Res 66:7136–7142

    Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) Science 275:1132–1136

    Google Scholar 

  • Knoops B, Clippe A, Bogard C, Arsalane K, Wattiezi R, Hermans C, Duconseille E, Falmagnei P, Bernard A (1999) J Biol Chem 274:30451–30458

    Google Scholar 

  • Kohler C, Gogvadze V, Hakansson A, Svanborg C, Orrenius S, Zhivotovsky B (2001) Eur J Biochem 268:186–191

    Google Scholar 

  • Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N (1999) Eur J Biochem 260:336–346

    Google Scholar 

  • Kropotov A, Gogvadze V, Shupliakov O, Tomilin N, Serikov VB, Tomilin NV, Zhivotovsky B (2006) Exp Cell Res 312:2806–2815

    Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) J Biol Chem 278:8516–8525

    Google Scholar 

  • Nakashima RA, Paggi MG, Pedersen PL (1984) Cancer Res 44:5702–5706

    Google Scholar 

  • Nathan M, Friehs I, Choi YH, Cowan DB, Cao-Danh H, McGowan FX, del Nido PJ (2005) Ann Thorac Surg 79:1620–1626

    Google Scholar 

  • Nutt LK, Gogvadze V, Uthaisang W, Mirnikjoo B, McConkey DJ, Orrenius S (2005) Cancer Biol Ther 4:459–467

    Google Scholar 

  • Orrenius S (2004) Toxicol Lett 149:19–23

    Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Proc Natl Acad Sci USA 99:1259–1263

    Google Scholar 

  • Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) J Biol Chem 273:7770–7775

    Google Scholar 

  • Perier C, Tieu K, Guegan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M (2005) Proc Natl Acad Sci USA 102:19126–19131

    Google Scholar 

  • Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G (1998) FEBS Lett 426:111–116

    Google Scholar 

  • Piccotti L, Buratta M, Giannini S, Gresele P, Roberti R, Corazzi L (2004) J Membr Biol 198:43–53

    Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Science 262:744–747

    Google Scholar 

  • Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2000a) J Biol Chem 275:32438–32443

  • Robertson JD, Orrenius S, Zhivotovsky B (2000b) J Struct Biol 129:346–358

  • Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM (2004) J Biol Chem 279:13575–13583

    Google Scholar 

  • Rostovtseva TK, Tan W, Colombini M (2005) J Bioenerg Biomembr 37:129–142

    Google Scholar 

  • Schmidt-Mende J, Gogvadze V, Hellstrom-Lindberg E, Zhivotovsky B (2006) Cell Death Differ 13:119–128

    Google Scholar 

  • Scorrano L, Petronilli V, Bernardi P (1997) J Biol Chem 272:12295–12299

    Google Scholar 

  • Shchepina LA, Pletjushkina OY, Avetisyan AV, Bakeeva LE, Fetisova EK, Izyumov DS, Saprunova VB, Vyssokikh MY, Chernyak BV, Skulachev VP (2002) Oncogene 21:8149–8157

    Google Scholar 

  • Shen HM, Pervaiz S (2006) FASEB J 20:1589–1598

    Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) Nature 399:483–487

    Google Scholar 

  • Stefanelli C, Bonavita F, Stanić I, Farruggia G, Falcieri E, Robuffo I, Pignatti C, Muscari C, Rossoni C, Guarnieri C, Caldarera CM (1997) Biochem J 322:909–917

    Google Scholar 

  • Viktorsson K, Lewensohn R, Zhivotovsky B (2005) Adv Cancer Res 94:143–196

    Google Scholar 

  • Wang Y, Perchellet EM, Ward MM, Lou K, Hua DH, Perchellet JP (2005) Anticancer Drugs 16:953–967

    Google Scholar 

  • Wang Y, Perchellet EM, Ward MM, Lou K, Zhao H, Battina SK, Wiredu B, Hua DH, Perchellet JP (2006) Int J Oncol 28:161–172

    Google Scholar 

  • Waring P, Beaver J (1996) Exp Cell Res 227:264–276

    Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) Genes Dev 14:2060–2071

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Genes Dev 19:1294–1305

    Google Scholar 

  • Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW (1994) FEBS Lett 339:40–44

    Google Scholar 

  • Wu Z, Rogers B, Kachi S, Hackett SF, Sick A, Campochiaro PA (2006) J Cell Physiol 209:996–1005

    Google Scholar 

  • Yamashita H, Avraham S, Jiang S, London R, Van Veldhoven PP, Subramani S, Rogers RA, Avraham H (2003) J Biol Chem 274:29897–29904

    Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Science 275:1129–1132

    Google Scholar 

  • Yang JC, Cortopassi GA (1998) Free Radic Biol Med 24:624–631

    Google Scholar 

  • Zhuang J, Ren Y, Snowden RT, Zhu H, Gogvadze V, Savill JS, Cohen GM (1998) J Biol Chem 273:15628–15632

    Google Scholar 

  • Zou H, Li Y, Liu X, Wang X (1999) J Biol Chem 274:11549–11556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gogvadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogvadze, V., Zhivotovsky, B. Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 39, 23–30 (2007). https://doi.org/10.1007/s10863-006-9054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9054-x

Keywords

Navigation