Skip to main content

Advertisement

Log in

Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

To investigate the interactions of Epidermal Growth Factor Receptor (EGFR)-inhibiting tyrosine kinase inhibitors (TKIs) on P-gp-mediated drug resistance, we tested three TKIs, lapatinib, gefitinib and erlotinib in direct ATPase assays and in Non-Small Cell Lung Cancer (NCSLC) cell lines with defined low levels of growth factor receptor expression. The three TKIs potentiated the action of known P-gp substrate cytotoxic drugs at therapeutically-relevant concentrations. However, more detailed analysis revealed that the interaction of lapatinib with P-gp was distinct from that of gefitinib and erlotinib, and was characterised by direct inhibition of the stimulated P-gp ATPase activity. Lapatinib proved the most potent P-gp modulator of the TKIs examined. Drug transport studies in the P-gp-over-expressing A549-Taxol cell line showed that lapatinib and erlotinib are capable of increasing docetaxel accumulation at clinically achievable concentrations. Combination studies with P-gp substrate chemotherapeutic agents, demonstrated that all three TKIs have significant potential to augment cytotoxic activity against P-gp-positive malignancies, however, interestingly, these agents also potentiated the toxicity of epirubicin in non-P-gp resistant parental cells. Our observations suggest that the combination of lapatinib with a taxane or anthracycline warrants clinical investigation in NSCLC to examine if beneficial or detrimental interactions may result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ito K et al (2005) Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 22(10):1559–1577. doi:10.1007/s11095-005-6810-2

    Article  CAS  PubMed  Google Scholar 

  2. Fardel O, Lecureur V, Guillouzo A (1996) The P-glycoprotein multidrug transporter. Gen Pharmacol 27(8):1283–1291. doi:10.1016/S0306-3623(96)00081-X

    CAS  PubMed  Google Scholar 

  3. Loo TW, Clarke DM (2005) Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 206(3):173–185. doi:10.1007/s00232-005-0792-1

    Article  CAS  PubMed  Google Scholar 

  4. van der Deen M et al (2005) ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res 6:59. doi:10.1186/1465-9921-6-59

    Article  PubMed  CAS  Google Scholar 

  5. Modok S, Mellor HR, Callaghan R (2006) Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 6(4):50–54. doi:10.1016/j.coph.2006.01.009

    Article  CAS  Google Scholar 

  6. Keri G, Orfi L (2006) Signal transduction therapy with rationally designed kinase inhibitors. Curr Signal Transduct Ther 1:67–95. doi:10.2174/157436206775269190

    Article  CAS  Google Scholar 

  7. Roskoski R Jr (2004) The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319(1):1–11. doi:10.1016/j.bbrc.2004.04.150

    Article  CAS  PubMed  Google Scholar 

  8. Kamath S, Buolamwini JK (2006) Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev 26(5):569–594. doi:10.1002/med.20070

    Article  CAS  PubMed  Google Scholar 

  9. Dei Tos AP, Ellis I (2005) Assessing epidermal growth factor receptor expression in tumours: what is the value of current test methods? Eur J Cancer 41(10):1383–1392. doi:10.1016/j.ejca.2005.03.018

    Article  CAS  PubMed  Google Scholar 

  10. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 5(8):649–659. doi:10.1038/nrd2089

    Article  CAS  PubMed  Google Scholar 

  11. Kris MG (2005) How today's developments in the treatment of non-small cell lung cancer will change tomorrow's standards of care. Oncologist 10(Suppl 2):23–29. doi:10.1634/theoncologist.10-90002-23

    Article  CAS  PubMed  Google Scholar 

  12. Geyer CE et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743. doi:10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  13. Yang CH et al (2005) Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res 65(15):6943–6949. doi:10.1158/0008-5472.CAN-05-0641

    Article  CAS  PubMed  Google Scholar 

  14. Ozvegy-Laczka C et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65(6):1485–1495. doi:10.1124/mol.65.6.1485

    Article  PubMed  Google Scholar 

  15. Li J et al (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6(3):432-438. doi:10.1158/1535-7163.MCT-06-0643

    Article  CAS  PubMed  Google Scholar 

  16. Kitazaki T et al (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49(3):337–343. doi:10.1016/j.lungcan.2005.03.035

    Article  PubMed  Google Scholar 

  17. Shi Z et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67(22):11012–11020. doi:10.1158/0008-5472.CAN-07-2686

    Article  CAS  PubMed  Google Scholar 

  18. Dai CL et al (2008) Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 68(19):7905–7914. doi:10.1158/0008-5472.CAN-08-0499

    Article  CAS  PubMed  Google Scholar 

  19. Duffy CP et al (1998) Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). Eur J Cancer 34(8):1250–1259. doi:10.1016/S0959-8049(98)00045-8

    Article  CAS  PubMed  Google Scholar 

  20. Clynes M et al (1992) Multiple drug-resistance in variant of a human non-small cell lung carcinoma cell line, DLKP-A. Cytotechnology 10(1):75–89. doi:10.1007/BF00376102

    Article  CAS  PubMed  Google Scholar 

  21. Sarkadi B et al (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 267(7):4854–4858

    CAS  PubMed  Google Scholar 

  22. Martin A, Clynes M (1993) Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology 11(1):49–58. doi:10.1007/BF00749057

    Article  CAS  PubMed  Google Scholar 

  23. O'Connor R et al (2007) A phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with advanced cancer. Cancer Chemother Pharmacol 59(1):79–87. doi:10.1007/s00280-006-0240-7

    Article  PubMed  CAS  Google Scholar 

  24. Herbst RS et al (2002) Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol 20(18):3815–3825. doi:10.1200/JCO.2002.03.038

    Article  CAS  PubMed  Google Scholar 

  25. Hidalgo M et al (2001) Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19(13):3267–3279

    CAS  PubMed  Google Scholar 

  26. Burris HA III et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23(23):5305–5313. doi:10.1200/JCO.2005.16.584

    Article  CAS  PubMed  Google Scholar 

  27. Kruh GD et al (2001) MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr 33(6):493–501. doi:10.1023/A:1012827221844

    Article  CAS  PubMed  Google Scholar 

  28. Hooijberg JH et al (2000) The effect of glutathione on the ATPase activity of MRP1 in its natural membranes. FEBS Lett 469(1):47–51. doi:10.1016/S0014-5793(00)01238-2

    Article  CAS  PubMed  Google Scholar 

  29. Glavinas H et al (2007) ABCG2 (breast cancer resistance protein/mitoxantrone resistance-associated protein) ATPase assay: a useful tool to detect drug-transporter interactions. Drug Metab Dispos 35(9):1533–1542. doi:10.1124/dmd.106.014605

    Article  CAS  PubMed  Google Scholar 

  30. Ozvegy-Laczka C et al (2005) Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta 1668(1):53–63. doi:10.1016/j.bbamem.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  31. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424. doi:10.1634/theoncologist.8-5-411

    Article  CAS  PubMed  Google Scholar 

  32. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36(2):99–114. doi:10.2165/00003088-199936020-00002

    Article  CAS  PubMed  Google Scholar 

  33. Licht T et al (1994) P-glycoprotein-mediated multidrug resistance in normal and neoplastic hematopoietic cells. Ann Hematol 69(4):159–171. doi:10.1007/BF02215949

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z et al (1999) Multidrug resistance P-glycoprotein function of bone marrow hematopoietic cells and the reversal agent effect. J Tongji Med Univ 19(4):260–263

    Article  CAS  PubMed  Google Scholar 

  35. Di Leo A et al (2008) Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J Clin Oncol 26(34):5544–5552. doi:10.1200/JCO.2008.16.2578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Lapatinib and Elacridar were kindly provided by GlaxoSmithKline. This work was made possible by a PRTLI cycle III award from the Higher Education Authority and funding from Cancer Research Ireland (CRI 03OCO).

Conflict of interest statement

The authors have no conflicts of interest arising from the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Collins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Data (DOC 45 kb)

ESM 1

Supplementary Data (DOC 170 kb)

ESM 1

Supplementary Data (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, D.M., Crown, J., O’Donovan, N. et al. Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines. Invest New Drugs 28, 433–444 (2010). https://doi.org/10.1007/s10637-009-9266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9266-0

Keywords

Navigation