Skip to main content

Advertisement

Log in

Expression and Prognostic Significance of CD151, c-Met, and Integrin alpha3/alpha6 in Pancreatic Ductal Adenocarcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

CD151, c-Met, and integrin alpha3/alpha6 are all involved in the hepatocyte growth factor (HGF)/c-Met signal pathway, which plays an important role in the malignant progression of tumors.

Aims

The purpose of this study was to explore the expression and prognostic significance of these proteins in pancreatic ductal adenocarcinoma (PDAC).

Methods

We used immunohistochemical methods to investigate the expression patterns of CD151, c-Met, and integrin alpha3/alpha6proteins in 71 patients with PDAC and in ten samples of normal pancreatic tissue. We also assessed correlations between these proteins and clinicopathological parameters and survival of PDAC patients using various statistical methods.

Results

CD151, c-Met, and integrin alpha3/alpha6 were all overexpressed in PDAC. CD151 and c-Met overexpressions were significantly associated with TNM stage (p = 0.001 and p = 0.038, respectively) and lymph node invasion (p = 0.000, p = 0.012, respectively). A significant positive linear correlation was found between CD151 and c-Met (r = 0.583; p = 0.000), integrin alpha3 (r = 0.457; p = 0.000), and integrin alpha6 (r = 0.671; p = 0.000). Overexpression of CD151, c-Met, integrin alpha3, or integrin alpha6 was related to poor survival of PDAC patients (p = 0.000, p = 0.000, p = 0.005, and p = 0.003, respectively), and CD151 and c-Met were independent factors in prognosis of PDAC.

Conclusions

CD151, c-Met, and integrin alpha3/alpha6 were all overexpressed in PDAC. CD151 and c-Met might be new molecular markers to predict the prognosis of PDAC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249.

    Article  PubMed  Google Scholar 

  2. Schneider G, Siveke JT, Eckel F, et al. Pancreatic cancer: basic and clinical aspects. Gastroenterology. 2005;128:1606–1625.

    Article  PubMed  CAS  Google Scholar 

  3. Carpelan-Holmström M, Nordling S, Pukkala E, et al. Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. Gut. 2005;54:385–387.

    Article  PubMed  Google Scholar 

  4. Zöller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.

    Article  PubMed  Google Scholar 

  5. Zheng ZZ, Liu ZX. CD151 gene delivery increases eNOS activity and induces ECV304 migration, proliferation and tube formation. Acta Pharmacol Sin. 2007;28:66–72.

    Article  PubMed  CAS  Google Scholar 

  6. Winterwood NE, Varzavand A, Meland MN, et al. A critical role for tetraspanin CD151 in α3β1 and α6β4 integrin dependent tumor cell functions on laminin-5. Mol Biol Cell. 2006;17:2707–2721.

    Article  PubMed  CAS  Google Scholar 

  7. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.

    Article  PubMed  CAS  Google Scholar 

  8. Hong IK, Jin YJ, Byun HJ, et al. Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem. 2006;281:24279–24292.

    Article  PubMed  CAS  Google Scholar 

  9. Testa JE, Brooks PC, Lin JM, et al. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res. 1999;59:3812–3820.

    PubMed  CAS  Google Scholar 

  10. Hashida H, Takabayashi A, Tokuhara T, et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer. 2003;89:158–167.

    Article  PubMed  CAS  Google Scholar 

  11. Ang J, Lijovic M, Ashman LK, et al. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev. 2004;13:1717–1721.

    PubMed  CAS  Google Scholar 

  12. Tokuhara T, Hasegawa H, Hattori N, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res. 2001;7:4109–4114.

    PubMed  CAS  Google Scholar 

  13. Ke AW, Shi GM, Zhou J, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 2009;49:491–503.

    Article  PubMed  CAS  Google Scholar 

  14. Gesierich S, Paret C, Hildebrand D, et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res. 2005;11:2840–2852.

    Article  PubMed  CAS  Google Scholar 

  15. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6:801–811.

    Article  PubMed  CAS  Google Scholar 

  16. Yauch RL, Kazarov AR, Desai B, et al. Direct extracellular contact between integrin a(3)β(1) and TM4SF protein CD151. J Biol Chem. 2000;275:9230–9238.

    Article  PubMed  CAS  Google Scholar 

  17. Sterk LM, Geuijen CA, Oomen LC, et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin a6h4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol. 2000;149:969–982.

    Article  PubMed  CAS  Google Scholar 

  18. Löhr M, Trautmann B, Göttler M, et al. Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas. Pancreas. 1996;12:248–259.

    Article  PubMed  Google Scholar 

  19. Sawai H, Funahashi H, Matsuo Y, et al. Expression and prognostic roles of integrins and interleukin-1 receptor type I in patients with ductal adenocarcinoma of the pancreas. Dig Dis Sci. 2003;48:1241–1250.

    Article  PubMed  CAS  Google Scholar 

  20. Sawai H, Okada Y, Funahashi H, et al. Interleukin-1alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6beta1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol. 2006;7:8.

    Article  PubMed  Google Scholar 

  21. Nishimori H, Yasoshima T, Denno R, et al. A newperitoneal dissemination model established from the human pancreatic cancer cell line. Pancreas. 2001;22:348–356.

    Article  PubMed  CAS  Google Scholar 

  22. Linder S, Castanos-Velez E, von Rosen A, et al. Immunohistochemical expression of extracellular matrix proteins and adhesion molecules in pancreatic carcinoma. Hepatogastroenterology. 2001;48:1321–1327.

    PubMed  CAS  Google Scholar 

  23. Weinel RJ, Rosendahl A, Neumann K, et al. Expression and function of VLA-alpha 2, -alpha 3, -alpha 5 and -alpha 6-integrin receptors in pancreatic carcinoma. Int J Cancer. 1992;52:827–833.

    Article  PubMed  CAS  Google Scholar 

  24. Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun. 2005;336:408–416.

    Article  PubMed  CAS  Google Scholar 

  25. Klosek SK, Nakashiro K, Hara S, et al. CD151 regulates HGF-stimulated morphogenesis of human breast cancer cells. Biochem Biophys Res Commun. 2009;379:1097–1100.

    Article  PubMed  CAS  Google Scholar 

  26. Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–925.

    Article  PubMed  CAS  Google Scholar 

  27. Lengyel E, Prechtel D, Resau JH, et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer. 2005;113:678–682.

    Article  PubMed  CAS  Google Scholar 

  28. Amemiya H, Kono K, Itakura J, et al. c-Met expression in gastric cancer with liver metastasis. Oncology. 2002;63:286–296.

    Article  PubMed  CAS  Google Scholar 

  29. Ebert M, Yokoyama M, Friess H, et al. Coexpression of the c-met proto-oncogene and hepatocyte growth factor in human pancreatic cancer. Cancer Res. 1994;54:5775–5778.

    PubMed  CAS  Google Scholar 

  30. Sobin LH, Gospodarowicz MK, Wittekind C. UICC-TNM Classification of Malignant Tumours. New York, NY: Wiley-Liss; 2009.

    Google Scholar 

  31. Lüttges J, Schemm S, Vogel I, et al. The grade of pancreatic ductal adenocarcinomas is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191:154–161.

    Article  PubMed  Google Scholar 

  32. Stipp CS, Kolesnikova TV, Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem Sci. 2003;28:106–112.

    Article  PubMed  CAS  Google Scholar 

  33. Hasegawa H, Nomura T, Kishimoto K, et al. SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with α5β1 integrin and regulates adhesion of human T cell leukemia virus type1-infected T cells to fibronectin. J Immunol. 1998;161:3087–3095.

    PubMed  CAS  Google Scholar 

  34. Yáñez-Mó M, Alfranca A, Cabañas C, et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141:791–804.

    Article  PubMed  Google Scholar 

  35. Takeda Y, Kazarov AR, Butterfield CE, et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood. 2007;109:1524–1532.

    Article  PubMed  CAS  Google Scholar 

  36. Zijlstra A, Lewis J, Degryse B, et al. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008;13:221–234.

    Article  PubMed  CAS  Google Scholar 

  37. Hirano C, Nagata M, Noman AA, et al. Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer. 2009;124:2911–2916.

    Article  PubMed  CAS  Google Scholar 

  38. Yang XH, Richardson AL, Torres-Arzayus MI, et al. CD151 accelerates breast cancer by regulating alpha6 integrin function, signaling, and molecular organization. Cancer Res. 2008;68:3204–3213.

    Article  PubMed  CAS  Google Scholar 

  39. Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell. 1998;9:2751–2765.

    PubMed  CAS  Google Scholar 

  40. Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA. 2005;102:1939–1944.

    Article  PubMed  CAS  Google Scholar 

  41. Lammerding J, Kazarov AR, Huang H, et al. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA. 2003;100:7616–7621.

    Article  PubMed  CAS  Google Scholar 

  42. Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369:1742–1757.

    Article  PubMed  CAS  Google Scholar 

  43. Chattopadhyay N, Wang Z, Ashman LK, et al. alpha3beta1 integrin-CD151, a component of the cadherin–catenin complex, regulates PTPmu expression and cell–cell adhesion. J Cell Biol. 2003;163:1351–1362.

    Article  PubMed  CAS  Google Scholar 

  44. Shigeta M, Sanzen N, Ozawa M, et al. CD151 regulates epithelial cell–cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol. 2003;163:165–176.

    Article  PubMed  CAS  Google Scholar 

  45. Schmelz M, Cress AE, Scott KM, et al. Different phenotypes in human prostate cancer: alpha6 or alpha3 integrin in cell-extracellular adhesion sites. Neoplasia. 2002;4:243–254.

    Article  PubMed  CAS  Google Scholar 

  46. Jiang WG, Martin TA, Parr C, et al. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol. 2005;53:35–69.

    Article  PubMed  Google Scholar 

  47. Berditchevski F, Odintsova E, Sawada S, et al. Expression of the palmitoylation-deficient CD151 weakens the association of alpha3beta1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem. 2002;277:36991–37000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 09QA1404600) from the Science and Technology Commission of Shanghai Municipality awarded to the Department of Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jun Qiu.

Additional information

Guang-Hui Zhu and Chen Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, GH., Huang, C., Qiu, ZJ. et al. Expression and Prognostic Significance of CD151, c-Met, and Integrin alpha3/alpha6 in Pancreatic Ductal Adenocarcinoma. Dig Dis Sci 56, 1090–1098 (2011). https://doi.org/10.1007/s10620-010-1416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1416-x

Keywords

Navigation