Skip to main content

Advertisement

Log in

Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Integrin α3β1 promotes tumor cell adhesion, migration, and invasion on laminin isoforms, and several clinical studies have indicated a correlation between increased tumoral α3β1 integrin expression and tumor progression, metastasis, and poor patient outcomes. However, several other clinical and experimental studies have suggested that α3β1 can possess anti-metastatic activity in certain settings. To help define the range of α3β1 functions in tumor cells in vivo, we used RNAi to silence the α3 integrin subunit in an aggressive, in vivo-passaged subline of PC-3 prostate carcinoma cells. Loss of α3 integrin impaired adhesion and proliferation on the α3β1 integrin ligand, laminin-332 in vitro. Despite these deficits in vitro, the α3-silenced cells were significantly more aggressive in a lung colonization model in vivo, with a substantially increased rate of tumor growth that significantly reduced survival. In contrast, silencing the related α6 integrin subunit delayed metastatic growth in vivo. The increased colonization of α3-silenced tumor cells in vivo was recapitulated in 3D collagen co-cultures with lung fibroblasts or pre-osteoblast-like cells, where α3-silenced cells showed dramatically enhanced growth. The increased response of α3-silenced tumor cells to stromal cells in co-culture could be reproduced by fibroblast conditioned medium, which contains one or more heparin-binding factors that selectively favor the growth of α3-silenced cells. Our new data suggest a scenario in which α3β1 regulates tumor–host interactions within the metastatic tumor microenvironment to limit growth, providing some of the first direct evidence that specific loss of α3 function in tumor cells can have pro-metastatic consequences in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Goel HL, Alam N, Johnson INS, Languino LR (2009) Integrin signaling aberrations in prostate cancer. Am J Transl Res 1:211–220

    PubMed  CAS  Google Scholar 

  3. Goel HL, Li J, Kogan S, Languino LR (2008) Integrins in prostate cancer progression. Endocr Relat Cancer 15:657–664

    Article  PubMed  CAS  Google Scholar 

  4. Knudsen BS, Miranti CK (2006) The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression. J Cell Biochem 99:345–361

    Article  PubMed  CAS  Google Scholar 

  5. Sroka IC, Anderson TA, McDaniel KM, Nagle RB, Gretzer MB et al (2010) The laminin binding integrin alpha6beta1 in prostate cancer perineural invasion. J Cell Physiol 224:283–288

    Article  PubMed  CAS  Google Scholar 

  6. Davis TL, Cress AE, Dalkin BL, Nagle RB (2001) Unique expression pattern of the alpha6beta4 integrin and laminin-5 in human prostate carcinoma. Prostate 46:240–248

    Article  PubMed  CAS  Google Scholar 

  7. Hao J, Jackson L, Calaluce R, McDaniel K, Dalkin BL et al (2001) Investigation into the mechanism of the loss of laminin 5 (alpha3beta3gamma2) expression in prostate cancer. Am J Pathol 158:1129–1135

    Article  PubMed  CAS  Google Scholar 

  8. Schmelz M, Cress AE, Scott KM, Bürger F, Cui H et al (2002) Different phenotypes in human prostate cancer: alpha6 or alpha3 integrin in cell-extracellular adhesion sites. Neoplasia 4:243–254

    Article  PubMed  CAS  Google Scholar 

  9. Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y et al (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin–integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol 25:189–197

    Article  PubMed  CAS  Google Scholar 

  10. Jones JC, Hopkinson SB, Goldfinger LE (1998) Structure and assembly of hemidesmosomes. BioEssays 20:488–494

    Article  PubMed  CAS  Google Scholar 

  11. Frank DE, Carter WG (2004) Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J Cell Sci 117:1351–1363

    Article  PubMed  CAS  Google Scholar 

  12. Gu J, Sumida Y, Sanzen N, Sekiguchi K (2001) Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway. J Biol Chem 276:27090–27097

    Article  PubMed  CAS  Google Scholar 

  13. Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    Article  PubMed  CAS  Google Scholar 

  14. Zhou H, Kramer RH (2005) Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem 280:10624–10635

    Article  PubMed  CAS  Google Scholar 

  15. Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA (2003) Alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell–cell adhesion. J Cell Biol 163:1351–1362

    Article  PubMed  CAS  Google Scholar 

  16. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO (1997) Alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137:729–742

    Article  PubMed  CAS  Google Scholar 

  17. Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell–cell contacts. J Cell Sci 122:2263–2273

    Article  PubMed  CAS  Google Scholar 

  18. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K et al (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547

    PubMed  CAS  Google Scholar 

  19. Allen MV, Smith GJ, Juliano R, Maygarden SJ, Mohler JL (1998) Downregulation of the beta4 integrin subunit in prostatic carcinoma and prostatic intraepithelial neoplasia. Hum Pathol 29:311–318

    Article  PubMed  CAS  Google Scholar 

  20. Cress AE, Rabinovitz I, Zhu W, Nagle RB (1995) The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev 14:219–228

    Article  PubMed  CAS  Google Scholar 

  21. Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V et al (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 146:1498–1507

    PubMed  CAS  Google Scholar 

  22. Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217

    Article  PubMed  CAS  Google Scholar 

  23. Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS et al (2010) ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. J Biol Chem 285:33940–33948

    Article  PubMed  CAS  Google Scholar 

  24. Bair EL, Chen ML, McDaniel K, Sekiguchi K, Cress AE et al (2005) Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia 7:380–389

    Article  PubMed  CAS  Google Scholar 

  25. Lamb LE, Zarif JC, Miranti CK (2011) The androgen receptor induces integrin {alpha}6{beta}1 to promote prostate tumor cell survival via NF-{kappa}B and Bcl-xL independently of PI3K signaling. Cancer Res. 71(7):2739–2749

    Article  PubMed  CAS  Google Scholar 

  26. Hallmann R, Horn N, Selg M, Wendler O, Pausch F et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000

    Article  PubMed  CAS  Google Scholar 

  27. Gu Y, Sorokin L, Durbeej M, Hjalt T, Jönsson JI et al (1999) Characterization of bone marrow laminins and identification of alpha5-containing laminins as adhesive proteins for multipotent hematopoietic FDCP-Mix cells. Blood 93:2533–2542

    PubMed  CAS  Google Scholar 

  28. Siler U, Seiffert M, Puch S, Richards A, Torok-Storb B et al (2000) Characterization and functional analysis of laminin isoforms in human bone marrow. Blood 96:4194–4203

    PubMed  CAS  Google Scholar 

  29. Pawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE (2007) Integrin alpha6 cleavage: a novel modification to modulate cell migration. Exp Cell Res 313:1080–1089

    Article  PubMed  CAS  Google Scholar 

  30. King TE, Pawar SC, Majuta L, Sroka IC, Wynn D et al (2008) The role of alpha 6 integrin in prostate cancer migration and bone pain in a novel xenograft model. PLoS ONE 3:e3535

    Article  PubMed  Google Scholar 

  31. Ports MO, Nagle RB, Pond GD, Cress AE (2009) Extracellular engagement of alpha6 integrin inhibited urokinase-type plasminogen activator-mediated cleavage and delayed human prostate bone metastasis. Cancer Res 69:5007–5014

    Article  PubMed  CAS  Google Scholar 

  32. Dedhar S, Saulnier R, Nagle R, Overall CM (1993) Specific alterations in the expression of alpha 3 beta 1 and alpha 6 beta 4 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin Exp Metastasis 11:391–400

    Article  PubMed  CAS  Google Scholar 

  33. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3

    Article  PubMed  Google Scholar 

  34. Bergelson JM, St JN, Kawaguchi S, Pasqualini R, Berdichevsky F et al (1994) The I domain is essential for echovirus 1 interaction with VLA-2. Cell Adhes Commun 2:455–464

    Article  PubMed  CAS  Google Scholar 

  35. Weitzman JB, Pasqualini R, Takada Y, Hemler ME (1993) The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading, and homotypic cell aggregation. J Biol Chem 268:8651–8657

    PubMed  CAS  Google Scholar 

  36. Drake JM, Gabriel CL, Henry MD (2005) Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 22:674–684

    Article  PubMed  Google Scholar 

  37. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Google Scholar 

  38. Demetriou MC, Cress AE (2004) Integrin clipping: a novel adhesion switch? J Cell Biochem 91:26–35

    Article  PubMed  CAS  Google Scholar 

  39. Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    Article  PubMed  CAS  Google Scholar 

  40. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216

    Article  PubMed  CAS  Google Scholar 

  41. Copeland BT, Bowman MJ, Ashman LK (2012) Genetic ablation of the tetraspanin Cd151 reduces spontaneous metastatic spread of prostate cancer in the TRAMP model. Mol Cancer Res. doi:10.1158/1541-7786.MCR-12-0468

  42. Pawar SC, Dougherty S, Pennington ME, Demetriou MC, Stea BD et al (2007) Alpha6 integrin cleavage: sensitizing human prostate cancer to ionizing radiation. Int J Radiat Biol 83:761–767

    Article  PubMed  CAS  Google Scholar 

  43. Sroka IC, Sandoval CP, Chopra H, Gard JM, Pawar SC et al (2011) Macrophage-dependent cleavage of the laminin receptor alpha6beta1 in prostate cancer. Mol Cancer Res 9:1319–1328

    Article  PubMed  CAS  Google Scholar 

  44. Nagle RB, Cress AE (2011) Metastasis update: human prostate carcinoma invasion via tubulogenesis. Prostate Cancer 2011:249290

    Article  PubMed  Google Scholar 

  45. Yu H-M, Frank DE, Zhang J, You X, Carter WG et al (2004) Basal prostate epithelial cells stimulate the migration of prostate cancer cells. Mol Carcinog 41:85–97

    Article  PubMed  CAS  Google Scholar 

  46. Mitchell K, Svenson KB, Longmate WM, Gkirtzimanaki K, Sadej R et al (2010) Suppression of integrin {alpha}3{beta}1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res 70(15):6359–6367

    Article  PubMed  CAS  Google Scholar 

  47. Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378

    Article  PubMed  CAS  Google Scholar 

  48. da Silva RG, Tavora B, Robinson SD, Reynolds LE, Szekeres C et al (2010) Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am J Pathol 177:1534–1548

    Article  PubMed  Google Scholar 

  49. Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V et al (2008) Alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 118:965–974

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the University of Iowa Flow Cytometry Core Facility for assistance with cell sorting. This work was supported by NIH R01 CA136664, American cancer society RSG-07-043-01-CSM, and DOD W81XWH-07-1-0043 (C. S. S.), NIH R01 CA130916 (M. D. H.) and American heart association predoctoral fellowship 0610074Z (J. M. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Stipp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varzavand, A., Drake, J.M., Svensson, R.U. et al. Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clin Exp Metastasis 30, 541–552 (2013). https://doi.org/10.1007/s10585-012-9558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9558-1

Keywords

Navigation