Skip to main content

Advertisement

Log in

Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

ERK:

Extracellular signal regulated kinase

HGF:

Hepatocyte growth factor

DMSO:

Dimethyl sulfoxide

References

  1. Bosch FX, Ribes J, Diaz M et al (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127(5):S5–S16

    Article  PubMed  Google Scholar 

  2. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  PubMed  CAS  Google Scholar 

  3. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  PubMed  CAS  Google Scholar 

  4. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  PubMed  CAS  Google Scholar 

  5. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796(2):75–90

    PubMed  CAS  Google Scholar 

  6. Kaartinen V, Voncken JW, Shuler C et al (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta-3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11(4):415–421

    Article  PubMed  CAS  Google Scholar 

  7. Khoury H, Dankort DL, Sadekova S et al (2001) Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene 20(7):788–799

    Article  PubMed  CAS  Google Scholar 

  8. Valles AM, Boyer B, Badet J et al (1990) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 87(3):1124–1128

    Article  PubMed  CAS  Google Scholar 

  9. Naldini L, Weidner KM, Vigna E et al (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10(10):2867–2878

    PubMed  CAS  Google Scholar 

  10. Weidner KM, Hartmann G, Naldini L et al (1993) Molecular characteristics of HGF-SF and its role in cell motility and invasion. EXS 65:311–328

    PubMed  CAS  Google Scholar 

  11. Breuhahn K, Longerich T, Schirmacher P (2006) Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 25:3787–3800

    Article  PubMed  CAS  Google Scholar 

  12. Zeisberg M, Yang CQ, Martino M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347

    Article  PubMed  CAS  Google Scholar 

  13. Dooley S, Hamzavi J, Ciuclan L et al (2008) Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 135(2):642–659

    Article  PubMed  CAS  Google Scholar 

  14. Kaimori A, Potter J, Kaimori JY et al (2007) Transforming growth factor-beta 1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 282(30):22089–22101

    Article  PubMed  CAS  Google Scholar 

  15. Lazarevich N, Cheremnova OA, Varga EV et al (2004) Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology 39(4):1038–1047

    Article  PubMed  CAS  Google Scholar 

  16. Gotzmann J, Fischer ANM, Zojer M et al (2006) A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 25(22):3170–3185

    Article  PubMed  CAS  Google Scholar 

  17. van Zijl F, Zulehner G, Petz M et al (2009) Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 5(8):1169–1179

    Article  PubMed  Google Scholar 

  18. Fischer ANM, Herrera B, Mikula M et al (2005) Integration of Ras subeffector signaling in TGF-beta mediated late stage hepatocarcinogenesis. Carcinogenesis 26(5):931–942

    Article  PubMed  CAS  Google Scholar 

  19. Balaban YH, Us D, Hascelik G et al (2006) Hepatocellular carcinoma and cholangiocarcinoma are associated with high serum levels of hepatocyte growth factor. Indian J Gastroenterol 25(4):223–224

    PubMed  Google Scholar 

  20. Xie Q, Liu KD, Hu MY et al (2001) SF/HGF-c-Met autocrine and paracrine promote metastasis of hepatocellular carcinoma. World J Gastroenterol 7(6):816–820

    PubMed  CAS  Google Scholar 

  21. Son G, Hirano T, Seki E et al (2006) Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol 45(5):688–695

    Article  PubMed  CAS  Google Scholar 

  22. Ding W, You HN, Dang H et al (2010) Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology 52(3):945–953

    Article  PubMed  CAS  Google Scholar 

  23. Whittaker S, Marais R, Zhu AX (2010) The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29(36):4989–5005

    Article  PubMed  CAS  Google Scholar 

  24. Matsumoto K, Nakamura T (1996) Emerging multipotent aspects of hepatocyte growth factor. J Biochem 119(4):591–600

    PubMed  CAS  Google Scholar 

  25. Li XY, Zhan XR, Lu C et al (2010) Mechanisms of hepatocyte growth factor-mediated signaling in differentiation of pancreatic ductal epithelial cells into insulin-producing cells. Biochem Biophys Res Commun 398(3):389–394

    Article  PubMed  CAS  Google Scholar 

  26. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  PubMed  CAS  Google Scholar 

  27. Moore AE, Greenhough A, Roberts HR et al (2009) HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis 30(10):1796–1804

    Article  PubMed  CAS  Google Scholar 

  28. Abiru S, Nakao K, Ichikawa T et al (2002) Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology 35(5):1117–1124

    Article  PubMed  CAS  Google Scholar 

  29. Gonzales AJ, Goldsworthy TL, Fox TR (1998) Chemical transformation of mouse liver cells results in altered cyclin D CDK protein complexes. Carcinogenesis 19(6):1093–1102

    Article  PubMed  CAS  Google Scholar 

  30. Ogunwobi OA, Beales ILP (2006) Glycine-extended gastrin stimulates proliferation and inhibits apoptosis in colon cancer cells via cyclo-oxygenase-independent pathways. Regul Pept 134(1):1–8

    Article  PubMed  CAS  Google Scholar 

  31. Ogunwobi O, Mutungi G, Beales ILP (2006) Leptin stimulates proliferation and inhibits apoptosis in Barrett’s esophageal adenocarcinoma cells by cyclooxygenase-2-dependent, prostaglandin-E2-mediated transactivation of the epidermal growth factor receptor and c-Jun NH2-terminal kinase activation. Endocrinology 147(9):4505–4516

    Article  PubMed  CAS  Google Scholar 

  32. Zhu HZ, Dong HJ, Eksioglu E et al (2007) Hepatitis C virus triggers apoptosis of a newly developed hepatoma cell line through antiviral defense system. Gastroenterology 133:1649–1659

    Article  PubMed  CAS  Google Scholar 

  33. Behrens J, Mareel MM, Vanroy FM et al (1989) Dissecting tumor cell invasion—epithelial cellsacquireinvasivepropertiesafterthelossofuvomorulin-mediatedcell-cell adhesion. J Cell Biol 108(6):2435–2447

    Article  PubMed  CAS  Google Scholar 

  34. Thompson EW, Torri J, Sabol M et al (1994) Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 12(3):181–194

    Article  PubMed  CAS  Google Scholar 

  35. Guan F, Handa K, Hakomori SI (2009) Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci USA 106(18):7461–7466

    Article  PubMed  CAS  Google Scholar 

  36. Campard D, Lysy PA, Najimi M et al (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134(3):833–848

    Article  PubMed  CAS  Google Scholar 

  37. Har CH, Keong CK (2005) Effects of tocotrienols on cell viability and apoptosis in normal murine liver cells (BNL CL.2) and liver cancer cells (BNL 1ME A.7R.1), in vitro. Asia Pac J Clin Nutr 14(4):374–380

    PubMed  CAS  Google Scholar 

  38. Shangguan DH, Meng L, Cao ZHC et al (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728

    Article  PubMed  CAS  Google Scholar 

  39. Hsieh HL, Wu CB, Sun CC et al (2006) Sphingosine-1-phosphate induces COX-2 expression via PI3K/Akt and p42/p44 MAPK pathways in rat vascular smooth muscle cells. J Cell Physiol 207(3):757–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant R01CA133086 to Chen Liu. Olorunseun O. Ogunwobi is a Postdoctoral Fellow on a NIH T32 grant.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2011_9404_MOESM1_ESM.tif

Supplementary Figure 1 1MEA cells display molecular mesenchymal characteristics in comparison to BNL cells. A, B, D, E. Increased collagen I, vimentin, snail and slug expression respectively in 1MEA cells. C. Decreased AAT expression in 1MEA cells. *P < 0.05; **P < 0.01, N = 3 (TIFF 96 kb)

10585_2011_9404_MOESM2_ESM.tif

Supplementary Figure 2 Assessment of COX-2, ERK and Akt expression and effects of their inhibition on mesenchymal characteristics. Selective inhibitors of Akt (10 μM LY 294002), ERK (25 μM PD 98059) and COX-2 (1 μM celecoxib) inhibit Akt (A), ERK (B) and COX-2 (C). Inhibition of ERK but not Akt also leads to COX-2 inhibition (C). Inhibition of COX-2, Akt and ERK leads to reversal of vimentin (D), collagen I (E) and E-cadherin (F) by 1MEA cells. *P < 0.05, **P < 0.01, N = 3 (TIFF 109 kb)

10585_2011_9404_MOESM3_ESM.tif

Supplementary Figure 3 Migration, clonogenicity and in vivo tumorigenicity. A. 1MEA cells have greater migratory capacity than BNL cells. Selective inhibitors of Akt (10μM LY 294002) and COX-2 (1 μM celecoxib) but not ERK (25 μM PD 98059) inhibited the increased migratory capacity of 1MEA cells. B. 1MEA cells have greater clonogenicity than BNL cells. HGF stimulates increased clonogenicity of BNL cells. C. 1MEA cells but not BNL cells develop tumors in Balb/c mice. *P < 0.05, **P < 0.01, N = 3 (TIFF 876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogunwobi, O.O., Liu, C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis 28, 721–731 (2011). https://doi.org/10.1007/s10585-011-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9404-x

Keywords

Navigation