Skip to main content

Advertisement

Log in

Gene signature of the metastatic potential of cutaneous melanoma: too much for too little?

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

It was expected that with the advent of genomics, oncology may defeat the deadliest forms of cancer including malignant melanoma, but the past years have indicated that this is not the case. Despite the stunning success of genomics in defining markers or gene signatures for breast cancer prognosis and predicting therapies, there is virtually no progression in malignant melanoma. This is happening when experimental oncology or metastasis research is using several rodent and human melanoma models, when our knowledge on the metastatic cascade is actually derived from these models. Our critical analysis of these studies revealed several factors which might be responsible for this failure. First, it is evident, that these studies must be based on rigorous sample collection and basic pathological considerations, where divergent histological types of melanoma cannot be analysed universally. Secondly, without following basic consideration of metastasis biology, the majority of these studies were rarely based on primary tumors but frequently on various types of regional metastases. Third, successful expression profiling studies on other tumors such as breast cancer, provided evidences that the homogeneity of the patient cohort at least by clinicopathological stage is a critical element when defining prognostic signatures. Four studies attempted to define the prognostic signature of skin melanoma but only one based the study on the primary tumor resulting in heterogenous signatures with a minimal overlap (MCM3 and NFKBIZ). Four study attempted to define the invasiveness-signature in the primary tumor based on thickness or growth pattern discrimination identifying a 9-gene overlap which proved to be different from the prognostic signatures. On the other hand, seven studies analyzed various types of metastatic tissues (rarely visceral-, mostly cutaneous or lymphatic metastases) to define the metastasis-signatures, again with minimal overlap (AQP3, LGALS7 and SFN). Using seven GEO-based melanoma datasets we have performed a meta-analysis of the metastasis-gene signatures using normalization protocols. This analysis identified a 350-gene signature, the core of which was a 17-gene signature characterizing locoregional metastases where the individual components occurred in 3 studies: several members of this signature were extensively studied before in context of melanoma metastasis including WNT5A, EGFR, BCL2A1 and OPN. These data suggest that only efficient inter-disciplinary collaboration throughout genomic analysis of human skin melanoma could lead to major advances in defining relevant gene-sets appropriate for clinical prognostication or revealing basic molecular pathways of melanoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho K-H, Aiba S, Bröcker E-B, LeBoit PE, Pinkel D, Bastian BC (2006) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  Google Scholar 

  2. Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D, Bastian BC (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5(6):e120

    Article  PubMed  Google Scholar 

  3. Balch CM, Soong S-J, Thompson JF (2004) The natural history of melanoma and factors predicting outcome. In: Thompson JF, Morton DL, Kroon BBR (eds) Textbook of melanoma. Martin Dunitz Taylor & Francis Group, London, pp 181–199

    Google Scholar 

  4. Cochran AJ, Bailly C, Paul E, Remotti F, Bhuta S (eds) (1997) Characteristics that relate to prognosis. In: Melanocytic tumors. A guide to diagnosis. Lippincott—Raven Publ, Philadelphia, pp 261–286

  5. Manola J, Atkins M, Ibrahim J, Kirkwood J (2002) Prognostic factors in metastatic melanoma: a pooled analysis of eastern cooperative oncology group. J Clin Oncol 7:434–446

    Google Scholar 

  6. Streit M, Detmar M (2003) Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 22:3172–3179

    Article  PubMed  Google Scholar 

  7. Shields JD, Borsetti M, Rigby H, Harper SJ, Mortimer PS, Levick JR, Orlando A, Bates DO (2004) Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer 90:693–700

    Article  PubMed  Google Scholar 

  8. Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M (2001) Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159:893–903

    PubMed  Google Scholar 

  9. Schietroma C, Cianfarani F, Lacal PM, Odorisio T, Orecchia A, Kanitakis J, D’Atri S, Failla CM, Zambruno G (2003) Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 98:789–797

    Article  PubMed  Google Scholar 

  10. Achen MG, Williams RA, Minekus MP, Thornton GE, Stenvers K, Rogers PA, Lederman F, Foufail S, Stacker SA (2001) Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J Pathol 193:147–154

    Article  PubMed  Google Scholar 

  11. Döme B, Paku S, Somlai B, Tímár J (2002) Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol 197:355–362

    Article  PubMed  Google Scholar 

  12. Downing A, Yu XQ, Newton-Bishop J, Forman D (2008) Trends in prognostic factors and survival from cutaneous melanoma in Yorkshire, UK and New South Wales, Australia between 1993 and 2003. Int J Cancer 123(4):861–866

    Article  PubMed  Google Scholar 

  13. Lasithiotakis K, Leiter U, Meier F, Eigentler T, Metzler G, Moehrle M, Breuninger H, Garbe C (2008) Age and gender are significant independent predictors of survival in primary cutaneous melanoma. Cancer 112(8):1795–1804

    Article  PubMed  Google Scholar 

  14. Slingluff CL Jr, Chianese-Bullock KA, Bullock TN, Grosh WW, Mullins DW, Nichols L, Olson W, Petroni G, Smolkin M, Engelhard VH (2006) Immunity to melanoma antigens: from self-tolerance to immunotherapy. Adv Immunol 90:243–295

    Article  PubMed  Google Scholar 

  15. Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224

    Article  PubMed  Google Scholar 

  16. Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13:5256–5261

    Article  PubMed  Google Scholar 

  17. Ladányi A, Somlai B, Gilde K, Fejős Z, Gaudi I, Tímár J (2004) T-cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. Clin Cancer Res 10:521–530

    Article  PubMed  Google Scholar 

  18. Ladányi A, Kiss J, Somlai B, Gilde K, Zs Fejős, Mohos A, Gaudi I, Tímár J (2007) Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56:1459–1469

    Article  PubMed  Google Scholar 

  19. Chudnovsky Y, Khavari PA, Adams AE (2005) Melanoma genetics and the development of rational therapeutics. J Clin Invest 115:813–8245

    PubMed  Google Scholar 

  20. Gray-Schopfer VC, da Rocha Dias S, Marais R (2005) The role of B-RAF in melanoma. Cancer Metastasis Rev 24(1):165–183

    Article  PubMed  Google Scholar 

  21. Curtin JA, Busam K, Pinkel D, Bastian B (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  PubMed  Google Scholar 

  22. Natali PG, Nicotra MR, Di Renzo MF, Prat M, Bigotti A, Cavaliere R, Comoglio PM (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750

    PubMed  Google Scholar 

  23. Cruz J, Reis-Filho JS, Silva P, Lopes JM (2003) Expression of c-met tyrosine kinase receptor is biologically and prognostically relevant for primary cutaneous malignant melanomas. Oncology 65(1):72–82

    Article  PubMed  Google Scholar 

  24. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117–122

    Article  PubMed  Google Scholar 

  25. Goding C, Meyskens FL Jr (2006) Microphathalmic-associated transcription factor integrates melanocyte biology and melanoma progression. Clin Cancer Res 12:10671073

    Article  Google Scholar 

  26. Weeraratna AT (2005) A Wnt-er wonderland—the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev 24(2):237–250

    Article  PubMed  Google Scholar 

  27. Udart M, Utikal J, Krähn GM, Peter RU (2001) Chromosome 7 aneusomy. A merker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasma 3:245–254

    Article  Google Scholar 

  28. Rákosy Z, Vízkeleti L, Ecsedi S, Vokó Z, Bégány A, Barok M, Krekk Z, Gallai M, Szentirmay Z, Ádány R, Balázs M (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121:1729–1737

    Article  PubMed  Google Scholar 

  29. Ross DA, Laing JH, Sanders R, Wilson GD (2005) Long term follow-up of c-myc, p53 proliferation measurements in malignant melanoma. Eur J Surg Oncol 32:80–84

    Article  PubMed  Google Scholar 

  30. Rodolfo M, Daniotti M, Vallacchi V (2004) Genetic progression of metastatic melanoma. Cancer Lett 214:133–147

    Article  PubMed  Google Scholar 

  31. Bales E, Mills L, Milam N, McGahren-Murray M, Bandyopadhyay D, Chen D, Reed JA, Timchenko N, van den Oord JJ, Bar-Eli M, Keyomarsi K, Medrano EE (2005) The low molecular weight cyclin E isoforms augment angiogenesis and metastasis of human melanoma cells in vivo. Cancer Res 65:692–697

    PubMed  Google Scholar 

  32. Utikal J, Udart M, Leiter U, Peter RU, Krähn G (2005) Additional Cyclin D(1) gene copies associated with chromosome 11 aberrations in cutaneous malignant melanoma. Int J Oncol 26(3):597–605

    PubMed  Google Scholar 

  33. Seiter S, Schadendorf D, Herrmann K, Schneider M, Rösel M, Arch R, Tilgen W, Zöller M (1996) Expression of CD44 variant isoforms in malignant melanoma. Clin Cancer Res 2(3):447–456

    PubMed  Google Scholar 

  34. Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ (2000) Matrix etalloproteinases in human melanoma. J Invest Dermatol 115(3):337–344

    Article  PubMed  Google Scholar 

  35. Döme B, Somlai B, Ladányi A, Fazekas K, Zöller M, Tímár J (2001) Expression of CD44v3 splice variant is associated with the visceral metastatic phenotype of human melanoma. Virchow Arch 439:628–635

    Google Scholar 

  36. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R (2004) Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64(15):5270–5282

    Article  PubMed  Google Scholar 

  37. Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, Avril MF, Romero PLO, Robert T, Balacescu O, Eggermont AMM, Lenoir G, Sarasin A, Tursz T, van den Oord JJ, Spatz A (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98(7):472–482

    Article  PubMed  Google Scholar 

  38. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737

    Article  PubMed  Google Scholar 

  39. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brézillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636

    Article  PubMed  Google Scholar 

  40. Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11:8606–8614 24 Pt 1

    Article  PubMed  Google Scholar 

  41. Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50(20):6757–6764

    PubMed  Google Scholar 

  42. Trikha M, Tímár J, Zacharek A, Nemeth JA, Cai Y, Döme B, Somlai B, Rásó E, Ladányi A, Honn KV (2002) Role for β3 integrins in human melanoma growth and survival. Int J Cancer 101:156–167

    Article  PubMed  Google Scholar 

  43. Dai DL, Makretsov N, Campos EI, Huang C, Zhou Y, Huntsman D, Martinka M, Li G (2003) Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patients survival. Clin Cancer Res 9:4409–4414

    PubMed  Google Scholar 

  44. Hess AR, Seftor EA, Seftor REB, Hendrix MJC (2003) Phosphoinositide 3-kinase regulates MT1-MMP and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res 63:4757–4762

    PubMed  Google Scholar 

  45. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, Flotte TJ, Duncan LM, Granter SR, Chin L (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281

    Article  PubMed  Google Scholar 

  46. Tímár J, Rásó E, Döme B, Ladányi A, Bánfalvi T, Gilde K, Raz A (2002) Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. Clin Exp Metast 19:225–232

    Article  Google Scholar 

  47. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109(6):707–718

    Article  PubMed  Google Scholar 

  48. Mikhail M, Velazquez E, Shapiro R, Berman R, Pavlick A, Sorhaindo L, Spira J, Mir C, Panageas KS, Polsky D, Osman I (2005) PTEN expression in melanoma: relationship with patient survival, Bcl-2 expression, and proliferation. Clin Cancer Res 11(14):5153–5157

    Article  PubMed  Google Scholar 

  49. Hilmi C, Larribere L, Giuliano S, Bille K, Ortonne JP, Ballotti R, Bertolotto C (2008) IGF1 promotes resistance to apoptosis in melanoma cells through an increased expression of BCL2, BCL-X(L), and survivin. J Invest Dermatol 128(6):1499–1505

    Article  PubMed  Google Scholar 

  50. Piras F, Murtas D, Minerba L, Ugalde J, Floris C, Maxia C, Colombari R, Perra MT, Sirigu P (2007) Nuclear survivin is associated with disease recurrence and poor survival in patients with cutaneous malignant melanoma. Histopathology 50(7):835–842

    Article  PubMed  Google Scholar 

  51. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391(6664):298–301

    Article  PubMed  Google Scholar 

  52. Dai DL, Martinka M, Li G (2005) Prognostic significance of activated AKT expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23:1473–1482

    Article  PubMed  Google Scholar 

  53. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    Article  PubMed  Google Scholar 

  54. Zabierowski SE, Herlyn M (2008) Melanoma stem cells: the dark seed of melanoma. J Clin Oncol 26(17):2890–2894

    Article  PubMed  Google Scholar 

  55. Tímár J, Tóvári J, Rásó E, Mészáros L, Bereczky B, Lapis K (2005) Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology 69:185–201

    Article  PubMed  Google Scholar 

  56. Hendrix MJC, Seftor EA, Hess AR, Seftor REB (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Rev Cancer 3:411–421

    Article  Google Scholar 

  57. Ruf W, Seftor EA, Prtrovan R, Weiss RM, Gruman LM, Margaryan NV, Seftor REB, Miyagi Y, Hendrix MJC (2003) Differential role of tissue factor pathway inhibitor-1 and 2 (TFPI-1 and 2) in melanoma vasculogenic mimicry. Cancer Res 63:5381–5389

    PubMed  Google Scholar 

  58. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nature Med 12:895–904

    Article  PubMed  Google Scholar 

  59. Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metast 26:547–558

    Article  Google Scholar 

  60. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V, Hayward N, Trent J (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  Google Scholar 

  61. Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, Mocellin S, Rossi CR, Bicciato S, Wang E, Marincola FM, Zanovello P (2006) A gene expression signature associated with survival in metastatic melanoma. J Transl Med 4:50

    Article  PubMed  Google Scholar 

  62. John T, Black MA, Toro TT, Leader D, Gedye CA, Davis ID, Guilford PJ, Cebon JS (2008) Predicting clinical outcome through molecular profiling in stage III. Melanoma Clin Cancer Res 14:5173–5180

    Google Scholar 

  63. Wang E, Panelli MC, Zavaglia K, Mandruzzato S, Hu N, Taylor PR, Seliger B, Zanovello P, Freedman RS, Marincola FM (2004) Melanoma-restricted genes. J Transl Med 2:34

    Article  PubMed  Google Scholar 

  64. Becker B, Roesch A, Hafner C, Stolz W, Dugas M, Landthaler M, Vogt T (2004) Discrimination of melanocytic tumors by cDNA array hybridization of tissues prepared by laser pressure catapulting. J Invest Dermatol 122(2):361–368

    Article  PubMed  Google Scholar 

  65. Pfaff-Smith AP, Hoek K, Becker D (2005) Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther 4(9):1018–1029

    Article  Google Scholar 

  66. Nambiar S, Mirmohammadsadegh A, Doroudi R, Gustrau A, Marini A, Roeder G, Ruzicka T, Hengge ÚR (2005) Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch Dermatol 141(2):165–173

    Article  PubMed  Google Scholar 

  67. Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR III, Allen RE, Singer MI, Leong SP, Ljung BM, Sagebiel RW, Kashani-Sabet M (2005) The gene expression signatures of melanoma progression. PNAS 102(17):6092–6097

    Article  PubMed  Google Scholar 

  68. Jaeger J, Koczan D, Thiesen HJ, Ibrahim SM, Gross G, Spang R, Kunz M (2007) Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res 13(3):806–815

    Article  PubMed  Google Scholar 

  69. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, Shevde LA, Li W, Eschrich S, Daud A, Ju J, Matta J (2008) The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 1:13

    Article  PubMed  Google Scholar 

  70. Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund A (2009) Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PLoS One 4:e5645

    Article  PubMed  Google Scholar 

  71. Tibshirani R et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99(10):6567–6572

    Article  PubMed  Google Scholar 

  72. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208

    Article  PubMed  Google Scholar 

  73. Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(s1):S96–S104

    PubMed  Google Scholar 

  74. Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R (2006) Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19:290–302

    Article  PubMed  Google Scholar 

  75. Schmitt CJ, Franke WW, Goerdt S, Falkowska-Hansen B, Rickelt S, Peitsch WK (2007) Homo- and heterotypic cell contacts in malignant melanoma cells and desmoglein-2 as a novel solitary surface glycoprotein. J Invest Dermatol 127(9):2191–2206

    Article  PubMed  Google Scholar 

  76. Franco-Hernandez C, Martinez-Glez V, Arjona D, de Campos JM, Isla A, Gutierrez M, Vaquero J, Rey JA (2007) EGFR sequence variations and real-time quantitative polymerase chain reaction analysis of gene dosage in brain metastases of solid tumors. Cancer Genet Cytogenet 173(1):63–67

    Article  PubMed  Google Scholar 

  77. Akslen LA, Puntervoll H, Bachmann IM, Straume O, Vuhahula E, Kumar R, Molven A (2008) Mutation analysis of the EGFR-NRAS-BRAF pathway in melanomas from black Africans and other subgroups of cutaneous melanoma. Melanoma Res 18(1):29–35

    Article  PubMed  Google Scholar 

  78. Maelandsmo GM, Flørenes VA, Mellingsaeter T, Hovig E, Kerbel RS, Fodstad O (1997) Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer 74(4):464–469

    Article  PubMed  Google Scholar 

  79. Chu YW, Seftor EA, Romer LH, Hendrix MJ (1996) Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am J Pathol 148(1):63–69

    PubMed  Google Scholar 

  80. Hendrix MJ, Seftor EA, Seftor RE, Gardner LM, Boldt HC, Meyer M, Pe’er J, Folberg R (1998) Biologic determinants of uveal melanoma metastatic phenotype: role of intermediate filaments as predictive markers. Lab Invest 78(2):153–163

    PubMed  Google Scholar 

  81. Geissinger E, Weisser C, Fischer P, Schartl M, Wellbrock C (2002) Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen. Cancer Res 62(16):4820–4828

    PubMed  Google Scholar 

  82. Packer L, Pavey S, Parker A, Stark M, Johansson P, Clarke B, Pollock P, Ringner M, Hayward N (2006) Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis 27(9):1778–1786

    Article  PubMed  Google Scholar 

  83. Skrzypski M, Jassem E, Taron M, Sanchez JJ, Mendez P, Rzyman W, Gulida G, Raz D, Jablons D, Provencios M, Massuti B, Chaib I, Prez-Roca L, Jassem J, Rossell R (2008) Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clin Cancer Res 14:4794–4799

    Article  PubMed  Google Scholar 

  84. Rakha EA, El-Sayed ME, Reis-Filho JS, Ellis IO (2008) Expression profiling technology: its contribution to our understanding of breast cancer. Histopathology 52:67–81

    Article  PubMed  Google Scholar 

Download references

Grant support

Ministry of Economy (NKFP1a-0024-05), Ministry of Health (ETT 425/2006), 2BG is the recipient of the Bolyai fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Tímár.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 17106 kb)

Supplementary material 2 (TXT 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tímár, J., Győrffy, B. & Rásó, E. Gene signature of the metastatic potential of cutaneous melanoma: too much for too little?. Clin Exp Metastasis 27, 371–387 (2010). https://doi.org/10.1007/s10585-010-9307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9307-2

Keywords

Navigation