Skip to main content

Advertisement

Log in

Establishment and characterization of a new highly metastatic human osteosarcoma cell line

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common primary malignancy of bone in children and young adults. There is a paucity of tumorigenic and highly metastatic human osteosarcoma cell lines that have not been further transformed by exogenous means. Here we establish and characterize a highly metastatic human osteosarcoma cell line that is derived from a poorly metastatic MG63 line through serial passage in nude mice via intratibial injections. The occasional pulmonary metastases developed from MG63 were harvested and repassaged in mice until a highly metastatic subline (MG63.2) was established. The parental MG63 and highly metastatic MG63.2 cells were further characterized in vitro and in vivo. MG63.2 cells demonstrated increased cell migration and invasion compared to the parental MG63 cells. Conversely, cell adhesion was significantly greater in MG63 cells when compared to the MG63.2 cells. MG63.2 cells grew at a slightly slower rate than that of the parental cells. When injected into nude mice, MG63.2 cells had a greater than 200-fold increase in developing pulmonary metastases compared to the parental MG63 cells. MG63.2 cells also formed larger primary tumors when compared to the parental MG63 cells. Further analysis revealed that ezrin expression was up-regulated in the metastatic MG63.2 cells. Interestingly, expressions of MMP-2 and MMP-9 were down-regulated, and expression of TIMP-2 was up-regulated in the MG63.2 cells. Taken together, we have established and characterized a highly metastatic human osteosarcoma cell line that should serve as a valuable tool for future investigations on the pathogenesis, metastasis, and potential treatments of human osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murphey MD, Robbin MR, McRae GA et al (1997) The many faces of osteosarcoma. Radiographics 17(5):1205–1231

    PubMed  CAS  Google Scholar 

  2. Whelan JS (1997) Osteosarcoma. Eur J Cancer 33(10):1611–1618. doi:10.1016/S0959-8049(97)00251-7 (discussion 8–9)

    Article  PubMed  CAS  Google Scholar 

  3. Link MP, Goorin AM, Miser AW et al (1986) The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314(25):1600–1606

    PubMed  CAS  Google Scholar 

  4. Ward WG, Mikaelian K, Dorey F et al (1994) Pulmonary metastases of stage IIB extremity osteosarcoma and subsequent pulmonary metastases. J Clin Oncol 12(9):1849–1858

    PubMed  CAS  Google Scholar 

  5. Kaste SC, Pratt CB, Cain AM et al (1999) Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer 86(8):1602–1608. doi:10.1002/(SICI)1097-0142(19991015)86:8<1602::AID-CNCR31>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  6. Yonemoto T, Tatezaki S, Ishii T et al (1998) Prognosis of osteosarcoma with pulmonary metastases at initial presentation is not dismal. Clin Orthop Relat Res 349:194–199. doi:10.1097/00003086-199804000-00024

    Article  PubMed  Google Scholar 

  7. Jaffe N, Pearson P, Yasko AW et al (2003) Single and multiple metachronous osteosarcoma tumors after therapy. Cancer 98(11):2457–2466. doi:10.1002/cncr.11800

    Article  PubMed  Google Scholar 

  8. Kim SJ, Choi JA, Lee SH et al (2004) Imaging findings of extrapulmonary metastases of osteosarcoma. Clin Imaging 28(4):291–300. doi:10.1016/S0899-7071(03)00206-7

    Article  PubMed  Google Scholar 

  9. Kager L, Zoubek A, Potschger U et al (2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 21(10):2011–2018. doi:10.1200/JCO.2003.08.132

    Article  PubMed  Google Scholar 

  10. Mankin HJ, Hornicek FJ, Rosenberg AE et al (2004) Survival data for 648 patients with osteosarcoma treated at one institution. Clin Orthop Relat Res 429:286–291. doi:10.1097/01.blo.0000145991.65770.e6

    Article  PubMed  Google Scholar 

  11. Stiller CA, Craft AW, Corazziari I (2001) Survival of children with bone sarcoma in Europe since 1978: results from the EUROCARE study. Eur J Cancer 37(6):760–766. doi:10.1016/S0959-8049(01)00004-1

    Article  PubMed  CAS  Google Scholar 

  12. Solheim OP, Saeter G, Elomaa I et al (1992) The treatment of osteosarcoma: present trends. The Scandinavian Sarcoma Group experience. Ann Oncol 3(Suppl 2):S7–S11

    PubMed  Google Scholar 

  13. Tang N, Song WX, Luo J et al (2008) Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 466(9):2114–2130. doi:10.1007/s11999-008-0335-z

    Article  PubMed  Google Scholar 

  14. Gorlick R, Anderson P, Andrulis I et al (2003) Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res 9(15):5442–5453

    PubMed  Google Scholar 

  15. Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet 145(1):1–30. doi:10.1016/S0165-4608(03)00105-5

    Article  PubMed  CAS  Google Scholar 

  16. Pakos EE, Kyzas PA, Ioannidis JP (2004) Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysis. Clin Cancer Res 10(18 Pt 1):6208–6214. doi:10.1158/1078-0432.CCR-04-0246

    Article  PubMed  CAS  Google Scholar 

  17. Feugeas O, Guriec N, Babin-Boilletot A et al (1996) Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol 14(2):467–472

    PubMed  CAS  Google Scholar 

  18. Yokoyama R, Schneider-Stock R, Radig K et al (1998) Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathology. Res Pract 194(9):615–621

    CAS  Google Scholar 

  19. Luu HH, Kang Q, Park JK et al (2005) An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 22(4):319–329. doi:10.1007/s10585-005-0365-9

    Article  PubMed  Google Scholar 

  20. Misdorp W, Hart AA (1979) Some prognostic and epidemiologic factors in canine osteosarcoma. J Natl Cancer Inst 62(3):537–545

    PubMed  CAS  Google Scholar 

  21. Hahn KA, Legendre AM, Schuller HM (1997) Amputation and dexniguldipine as treatment for canine appendicular osteosarcoma. J Cancer Res Clin Oncol 123(1):34–38. doi:10.1007/BF01212612

    Article  PubMed  CAS  Google Scholar 

  22. Haines DM, Bruland OS, Matte G et al (1992) Immunoscintigraphic detection of primary and metastatic spontaneous canine osteosarcoma with F(ab’)2 fragments of osteosarcoma-associated monoclonal antibody TP-1. Anticancer Res 12(6B):2151–2157

    PubMed  CAS  Google Scholar 

  23. Khanna C, Prehn J, Yeung C et al (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18(3):261–271. doi:10.1023/A:1006767007547

    Article  PubMed  CAS  Google Scholar 

  24. Berlin O, Samid D, Donthineni-Rao R et al (1993) Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res 53(20):4890–4895

    PubMed  CAS  Google Scholar 

  25. McGary EC, Heimberger A, Mills L et al (2003) A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo. Clin Cancer Res 9(17):6560–6566

    PubMed  CAS  Google Scholar 

  26. Rhim JS, Putman DL, Arnstein P et al (1977) Characterization of human cells transformed in vitro by N-methyl-N′-nitro-N-nitrosoguanidine. Int J Cancer 19(4):505–510. doi:10.1002/ijc.2910190411

    Article  PubMed  CAS  Google Scholar 

  27. Hensler PJ, Annab LA, Barrett JC et al (1994) A gene involved in control of human cellular senescence on human chromosome 1q. Mol Cell Biol 14(4):2291–2297

    PubMed  CAS  Google Scholar 

  28. Heremans H, Billiau A, Cassiman JJ et al (1978) In vitro cultivation of human tumor tissues. II. Morphological and virological characterization of three cell lines. Oncology 35(6):246–252

    Article  PubMed  CAS  Google Scholar 

  29. Haydon RC, Zhou L, Feng T et al (2002) Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma. Clin Cancer Res 8(5):1288–1294

    PubMed  CAS  Google Scholar 

  30. Luo X, Sharff KA, Chen J et al (2008) S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res 466(9):2060–2070. doi:10.1007/s11999-008-0361-x

    Article  PubMed  Google Scholar 

  31. Oliver MH, Harrison NK, Bishop JE et al (1989) A rapid and convenient assay for counting cells cultured in microwell plates: application for assessment of growth factors. J Cell Sci 92(Pt 3):513–518

    PubMed  Google Scholar 

  32. Radjabi AR, Sawada K, Jagadeeswaran S et al (2008) Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem 283(5):2822–2834. doi:10.1074/jbc.M704855200

    Article  PubMed  CAS  Google Scholar 

  33. Yoshida BA, Sokoloff MM, Welch DR et al (2000) Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst 92(21):1717–1730. doi:10.1093/jnci/92.21.1717

    Article  PubMed  CAS  Google Scholar 

  34. Steeg PS (2005) Cancer biology: emissaries set up new sites. Nature 438(7069):750–751. doi:10.1038/438750b

    Article  PubMed  CAS  Google Scholar 

  35. Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosom Cancer 34(3):255–268. doi:10.1002/gcc.10083

    Article  PubMed  CAS  Google Scholar 

  36. Skubitz AP (2002) Adhesion molecules. Cancer Treat Res 107:305–329

    PubMed  CAS  Google Scholar 

  37. Ogino W, Takeshima Y, Mori T et al (2007) High level of ezrin mRNA expression in an osteosarcoma biopsy sample with lung metastasis. J Pediatr Hematol Oncol 29(7):435–439. doi:10.1097/MPH.0b013e3180640d18

    Article  PubMed  CAS  Google Scholar 

  38. Khanna C, Wan X, Bose S et al (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186. doi:10.1038/nm982

    Article  PubMed  CAS  Google Scholar 

  39. Ferrari C, Benassi S, Ponticelli F et al (2004) Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcoma: findings in 42 patients followed for 1–16 years. Acta Orthop Scand 75(4):487–491

    Article  PubMed  Google Scholar 

  40. Cho HJ, Lee TS, Park JB et al (2007) Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol 40(6):1069–1076

    PubMed  CAS  Google Scholar 

  41. Khanna C, Khan J, Nguyen P et al (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61(9):3750–3759

    PubMed  CAS  Google Scholar 

  42. Park HR, Jung WW, Bacchini P et al (2006) Ezrin in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Pathol Res Pract 202(7):509–515. doi:10.1016/j.prp.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  43. Kim MS, Song WS, Cho WH et al (2007) Ezrin expression predicts survival in stage IIB osteosarcomas. Clin Orthop Relat Res 459:229–236. doi:10.1097/BLO.0b013e3180413dbf

    Article  PubMed  Google Scholar 

  44. Hunter KW (2004) Ezrin, a key component in tumor metastasis. Trends Mol Med 10(5):201–204. doi:10.1016/j.molmed.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  45. Krishnan K, Bruce B, Hewitt S et al (2006) Ezrin mediates growth and survival in Ewing’s sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway. Clin Exp Metastasis 23(3–4):227–236. doi:10.1007/s10585-006-9033-y

    Article  PubMed  CAS  Google Scholar 

  46. Martin TA, Harrison G, Mansel RE et al (2003) The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 46(2):165–186. doi:10.1016/S1040-8428(02)00172-5

    Article  PubMed  Google Scholar 

  47. Li W, Zeng JC, Pei FX et al (2007) Establishment of orthotopic model of MG-63 osteosarcoma. Sichuan Da Xue Xue BaoYi Xue Ban 38(2):321–323

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Orthopaedic Research and Education Foundation (HHL, TCH and RCH), the Brinson Foundation (HHL, TCH and RCH), the American Cancer Society (HHL and TCH), and the National Institute of Health (HHL, TCH and RCH). We would like to thank Dr. Ernst Lengyel for providing the MMP-2, MMP-9, TIMP-1, and TIMP-2 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hue H. Luu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Luo, X., He, BC. et al. Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp Metastasis 26, 599–610 (2009). https://doi.org/10.1007/s10585-009-9259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9259-6

Keywords

Navigation