Skip to main content

Advertisement

Log in

A gene expression signature that defines breast cancer metastases

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The most important predictor of prognosis in breast cancer is lymph node status, yet little is known about molecular changes associated with lymph node metastasis. Here, gene expression analysis was performed on primary breast (PBT) and corresponding metastatic lymph node (MLN) tumors to identify molecular signatures associated with nodal metastasis. RNA was isolated after laser microdissection from frozen PBT and MLN from 20 patients with positive lymph nodes and hybridized to the microarray chips. Differential expression was determined using Mann–Whitney testing; Bonferroni corrected P values of 0.05 and 0.001 were calculated. Results were validated using TaqMan assays. Fifty-one genes were differentially expressed (< 1 × 10−5, less than twofold differences) between the PBT and paired MLN; 13 with significantly higher expression in the MLN and 38 in the PBT. qRT-PCR validated the differential expression of 40/51 genes. Of the 40 validated genes, NTS and PAX5 were found to have >100-fold higher expression in MLT while COL11A1, KRT14, MMP13, TAC1 and WNT2 had >100-fold higher expression in PBT. Gene expression differences between PBT and MLN suggests that expression of a unique set of genes is required for successful lymph node colonization. Genes expressed at higher levels in PBT are involved in degradation of the extracellular matrix, enabling cells with metastatic potential to disseminate, while genes expressed at higher levels in metastases are involved in transcription, signal transduction and immune response, providing cells with proliferation and survival advantages. These data improve our understanding of the biological processes involved in successful metastatis and provide new targets to arrest tumor cell dissemination and metastatic colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Cancer Society (2007) Cancer facts and figures 2007. American Cancer Society, Atlanta

    Google Scholar 

  2. Ellsworth RE, Ellsworth DL, Neatrour DM, Deyarmin B, Lubert SM, Sarachine MJ, Brown P, Hooke JA, Shriver CD (2005) Allelic imbalance in primary breast carcinomas and metastatic tumors of the axillary lymph nodes. Mol Cancer Res 3:71–77. doi:10.1158/1541-7786.MCR-04-0180

    Article  PubMed  CAS  Google Scholar 

  3. Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57:1597–1604

    PubMed  CAS  Google Scholar 

  4. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJF, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742. doi:10.1073/pnas.1331931100

    Article  PubMed  CAS  Google Scholar 

  5. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904. doi:10.1038/nm1469

    Article  PubMed  CAS  Google Scholar 

  6. McGuire WL, Clark GM (1992) Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 326:1756–1761

    PubMed  CAS  Google Scholar 

  7. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  8. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54. doi:10.1038/ng1060

    Article  PubMed  CAS  Google Scholar 

  9. Sorlie T, Perou CM, Tibshirania R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed  CAS  Google Scholar 

  10. van’t Veer LJ, Dai H, vande Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clincial outcome of breast cancer. Nature 415:530–536. doi:10.1038/415530a

    Article  CAS  Google Scholar 

  11. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458. doi:10.1038/nrc1098

    Article  PubMed  CAS  Google Scholar 

  12. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695. doi:10.1016/j.cell.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  13. Newman B, Austin MA, Lee M, King MC (1988) Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci USA 85:3044–3048. doi:10.1073/pnas.85.9.3044

    Article  PubMed  CAS  Google Scholar 

  14. Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49:751–758. doi:10.1002/1097-0142(19820215)49:4<751::AID-CNCR2820490426>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352. doi:10.1038/nrg2101

    Article  PubMed  CAS  Google Scholar 

  16. Vecchi M, Confalonieri S, Nuciforo P, Vigano MA, Capra M, Bianchi M, Nicosia D, Bianchi F, Galimberti V, Viale G, Riccardi A, Campanini R, Daidone MG, Pierotti MA, Pece S, Di Fiore PP (2008) Breast cancer metastses are molecularly distinct from their primary tumors. Oncogene 27:2148–2158. doi:10.1038/sj.onc.1210858

    Article  PubMed  CAS  Google Scholar 

  17. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98:413–423. doi:10.1002/cncr.11464

    Article  PubMed  Google Scholar 

  18. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastgui E, Zlotnick A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56. doi:10.1038/35065016

    Article  PubMed  CAS  Google Scholar 

  19. Vouyovitch CM, Vidal L, Borges S, Raccurt M, Arnould C, Chiesa J, Lobie PE, Lachuer J, Mertani HC (2008) Proteomic analysis of autocrine/paracrine effects of human growth hormone in human mammary carcinoma cells. Adv Exp Med Biol 617:493–500. doi:10.1007/978-0-387-69080-3_49

    Article  PubMed  Google Scholar 

  20. Lomenick JP, Hubert MA, Handwerger S (2006) Transcription factor FOXF1 regulates growth hormone variant gene expression. Am J Physiol Endocrinol Metab 291:E945–E951. doi:10.1152/ajpendo.00128.2006

    Article  Google Scholar 

  21. Seoane J, Le HV, Shen L, Anderson SA, Massagué J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223. doi:10.1016/S0092-8674(04)00298-3

    Article  PubMed  CAS  Google Scholar 

  22. Somai S, Gompel A, Rostene W, Forgez P (2002) Neurotensin counteracts apoptosis in breast cancer cells. Biochem Biophys Res Commun 295:482–488. doi:10.1016/S0006-291X(02)00703-9

    Article  PubMed  CAS  Google Scholar 

  23. Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, Ning C, Fang Z, Wang Y, Zhang L, Cheng J, Zhang W, Hao X (2007) Differentially expressed genes between primary cancer and paired lymph node metastses predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 103:319–329. doi:10.1007/s10549-006-9385-7

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki M, Tarin D (2007) Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol 1:172–180. doi:10.1016/j.molonc.2007.03.005

    Article  Google Scholar 

  25. Jenssen TK, Hovig E (2005) Gene-expression profiling in breast cancer. Lancet 365:634–635

    PubMed  Google Scholar 

  26. Harrell JC, Dye WW, Harvell DME, Sartorius CA, Horwitz KB (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastses. Clin Exp Metastasis 25:81–88. doi:10.1007/s10585-007-9105-7

    Article  PubMed  Google Scholar 

  27. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Darrell Ellsworth and George Iida for helpful and critical review of this manuscript. Supported by the United States Department of Defense (Military Molecular Medicine Initiative MDA W81XWH-05-2-0075). The opinion and assertions contained herein are the private views of the authors and are not to be construed as official or as representing the views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Ellsworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 14645 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellsworth, R.E., Seebach, J., Field, L.A. et al. A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis 26, 205–213 (2009). https://doi.org/10.1007/s10585-008-9232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9232-9

Keywords

Navigation