Skip to main content
Log in

The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The constitutive activation of β-catenin-dependent (‘canonical’) Wnt signalling is a necessary initiating event in the genesis of most colorectal cancers. As this constitutive activation occurs through genetic mutation of one of the down-stream components of the signalling pathway, it was presumed that additional regulation of β-catenin-dependent Wnt signalling would be inconsequential. However, it is now recognised that additional modulation of β-catenin-dependent Wnt signalling is involved in tumour progression, and many of the genes associated with tumour invasion and metastasis are β-catenin/TCF transcriptional target genes that are dynamically regulated during cancer progression. Intriguingly, the demonstration that naturally occurring inhibitors of Wnt-Frizzled (FZD) interaction are bona fide tumour suppressors in this cancer suggests that additional modulation of Wnt signalling is via the upstream components of the pathway. This is corroborated by recent studies that demonstrate tumour-promoting roles for Wnt and FZD per se. Moreover, both β-catenin-dependent and β-catenin-independent Wnt/FZD-mediated signalling is implicated during the dynamic and reversible EMT and MET that underscore colorectal cancer progression. Importantly, therapeutic targeting of the Wnt signalling pathway at the plasma membrane is clearly indicated by the profound anti-tumour activity of small molecule inhibitors and dominant-negative receptor constructs that target the receptor complex. The potential to effectively target EMT and MET processes at the plasma membrane via the upstream components of the Wnt signalling pathway offers new hope for anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. NCI (http://www.cancer.gov/cancertopics/types/colon-and-rectal)

  2. Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    Article  PubMed  CAS  Google Scholar 

  3. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  4. van de Wetering M, Sancho E, Verweij C et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  5. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  6. Brabletz T, Jung A, Reu S et al (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361

    Article  PubMed  CAS  Google Scholar 

  7. Vincan E, Darcy PK, Smyth MJ et al (2005) Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation 73:142–153

    Article  PubMed  CAS  Google Scholar 

  8. Fujii N, You L, Xu Z et al (2007) An antagonist of dishevelled protein–protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res 67:573–579

    Article  PubMed  CAS  Google Scholar 

  9. DeAlmeida VI, Miao L, Ernst JA et al (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67:5371–5379

    Article  PubMed  CAS  Google Scholar 

  10. You L, He B, Xu Z et al (2004) An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64:5385–5389

    Article  PubMed  CAS  Google Scholar 

  11. Aguilera O, Fraga MF, Ballestar E et al (2006) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25:4116–4121

    Article  PubMed  CAS  Google Scholar 

  12. Caldwell GM, Jones C, Gensberg K et al (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64:883–888

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki H, Watkins DN, Jair KW et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

    Article  PubMed  CAS  Google Scholar 

  14. Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119:395–402

    Article  PubMed  CAS  Google Scholar 

  15. Bilic J, Huang YL, Davidson G et al (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622

    Article  PubMed  CAS  Google Scholar 

  16. Rubin JS, Barshishat-Kupper M, Feroze-Merzoug F et al (2006) Secreted Wnt antagonists as tumour supressors: pro and con. Front Biosci 11:2093–2105

    Article  PubMed  CAS  Google Scholar 

  17. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  PubMed  CAS  Google Scholar 

  18. Slusarski DC, Pelegri F (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307:1–13

    Article  PubMed  CAS  Google Scholar 

  19. Saburi S, McNeill H (2005) Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr Opin Cell Biol 17:482–488

    Article  PubMed  CAS  Google Scholar 

  20. Vinson CR, Conover S, Adler PN (1989) A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338:263–264

    Article  PubMed  CAS  Google Scholar 

  21. Mikels AJ, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25:7461–7468

    Article  PubMed  CAS  Google Scholar 

  22. Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474

    Article  PubMed  CAS  Google Scholar 

  23. Rubinfeld B, Souza B, Albert I et al (1993) Association of the APC gene product with beta-catenin. Science 262:1731–1734

    Article  PubMed  CAS  Google Scholar 

  24. Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  25. Korinek V, Barker N, Morin PJ et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  26. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890

    Article  PubMed  CAS  Google Scholar 

  27. Sansom OJ, Reed KR, Hayes AJ et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18:1385–1390

    Article  PubMed  CAS  Google Scholar 

  28. Korinek V, Barker N, Moerer P et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383

    Article  PubMed  CAS  Google Scholar 

  29. Pinto D, Gregorieff A, Begthel H et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    Article  PubMed  CAS  Google Scholar 

  30. Kuhnert F, Davis CR, Wang HT et al (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 101:266–271

    Article  PubMed  CAS  Google Scholar 

  31. Batlle E, Henderson JT, Beghtel H et al (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263

    Article  PubMed  CAS  Google Scholar 

  32. Taketo MM (2006) Wnt signaling and gastrointestinal tumorigenesis in mouse models. Oncogene 25:7522–7530

    Article  PubMed  CAS  Google Scholar 

  33. Brabletz T, Jung A, Hermann K et al (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    PubMed  CAS  Google Scholar 

  34. Kirchner T, Brabletz T (2000) Tumor patterning: analogies of neoplastic morphogenesis with embryogenesis. Verh Dtsch Ges Pathol 84:22–27

    PubMed  CAS  Google Scholar 

  35. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  36. Munoz R, Moreno M, Oliva C et al (2006) Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 8:492–500

    Article  PubMed  CAS  Google Scholar 

  37. Spencer VA, Xu R, Bissell MJ (2007) Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 97:275–294

    Article  PubMed  CAS  Google Scholar 

  38. Dimitriadis A, Vincan E, Mohammed IM et al (2001) Expression of Wnt genes in human colon cancers. Cancer Lett 166:185–199

    Article  PubMed  CAS  Google Scholar 

  39. Vincan E (2004) Frizzled/WNT signalling: the insidious promoter of tumour growth and progression. Front Biosci 9:1023–1034

    Article  PubMed  CAS  Google Scholar 

  40. Vincan E, Darcy PK, Farrelly CA et al (2007) Frizzled-7 dictates three-dimensional organization of colorectal cancer cell carcinoids. Oncogene 26:2340–2352

    Article  PubMed  CAS  Google Scholar 

  41. Holcombe RF, Marsh JL, Waterman ML et al (2002) Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 55:220–226

    Article  PubMed  CAS  Google Scholar 

  42. He B, Reguart N, You L et al (2005) Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24:3054–3058

    Article  PubMed  CAS  Google Scholar 

  43. Xu XL, Yu J, Zhang HY et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 10:3441–3454

    PubMed  CAS  Google Scholar 

  44. Taniguchi H, Yamamoto H, Hirata T et al (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24:7946–7952

    Article  PubMed  CAS  Google Scholar 

  45. You L, Kim J, He B et al (2006) Wnt-1 signal as a potential cancer therapeutic target. Drug News Perspect 19:27–31

    Article  PubMed  CAS  Google Scholar 

  46. Zi X, Guo Y, Simoneau AR et al (2005) Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res 65:9762–9770

    Article  PubMed  CAS  Google Scholar 

  47. Winklbauer R, Medina A, Swain RK et al (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413:856–860

    Article  PubMed  CAS  Google Scholar 

  48. Medina A, Reintsch W, Steinbeisser H (2000) Xenopus frizzled 7 can act in canonical and non-canonical Wnt signaling pathways: implications on early patterning and morphogenesis. Mech Dev 92:227–237

    Article  PubMed  CAS  Google Scholar 

  49. Kemp CR, Willems E, Wawrzak D et al (2007) Expression of Frizzled5, Frizzled7, and Frizzled10 during early mouse development and interactions with canonical Wnt signaling. Dev Dyn 236:2011–2019

    Article  PubMed  CAS  Google Scholar 

  50. Minobe S, Fei K, Yan L et al (2000) Identification and characterization of the epithelial polarity receptor “Frizzled” in Hydra vulgaris. Dev Genes Evol 210:258–262

    Article  PubMed  CAS  Google Scholar 

  51. Sagara N, Toda G, Hirai M et al (1998) Molecular cloning, differential expression, and chromosomal localization of human frizzled-1, frizzled-2, and frizzled-7. Biochem Biophys Res Commun 252:117–122

    Article  PubMed  CAS  Google Scholar 

  52. Gregorieff A, Pinto D, Begthel H et al (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129:626–638

    PubMed  CAS  Google Scholar 

  53. Wang Y, Guo N, Nathans J (2006) The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 26:2147–2156

    Article  PubMed  CAS  Google Scholar 

  54. Witzel S, Zimyanin V, Carreira-Barbosa F et al (2006) Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J Cell Biol 175:791–802

    Article  PubMed  CAS  Google Scholar 

  55. Song MR, Shirasaki R, Cai CL et al (2006) T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 133:4945–4955

    Article  PubMed  CAS  Google Scholar 

  56. Vincan E, Swain RK, Brabletz T et al (2007) Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Front Biosci 12:4558–4567

    Article  PubMed  CAS  Google Scholar 

  57. Iglesias DM, Hueber PA, Chu L et al (2007) Canonical WNT signaling during kidney development. Am J Physiol Renal Physiol 293:F494–F500

    Article  PubMed  CAS  Google Scholar 

  58. Katoh M, Hirai M, Sugimura T et al (1996) Cloning, expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family. Oncogene 13:873–876

    PubMed  CAS  Google Scholar 

  59. Shi Y, He B, Kuchenbecker KM et al (2007) Inhibition of Wnt-2 and galectin-3 synergistically destabilizes beta-catenin and induces apoptosis in human colorectal cancer cells. Int J Cancer 121:1175–1181

    Article  PubMed  CAS  Google Scholar 

  60. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 12:997–1014

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported, in part, by a grant-in-aid from the Cancer Council of Victoria (to EV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Vincan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincan, E., Barker, N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis 25, 657–663 (2008). https://doi.org/10.1007/s10585-008-9156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9156-4

Keywords

Navigation