Skip to main content

Advertisement

Log in

A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Invasive cancer cells utilize matrix metalloproteinases (MMPs) to degrade the extracellular matrix and basement membrane in the process of metastasis. Among multiple members of the MMP family, the gelatinase MMP-2 has been implicated in the development and dissemination of malignancies. However, the cellular source of MMP-2 and its effect on metastatic extravasation have not been well characterized. The objective of this study was to test the hypothesis that active MMP-2 derived from endothelial cells facilitated the transmigration of breast cancer cells across the microvascular barrier. Gelatin zymography was used to assess latent and active MMP-2 production in conditioned media from MDA-MB-231 human breast cancer cells, human lung microvascular endothelial cells (HLMVEC) and co-culture of these two cells. Transmigrated cancer cells were measured during MMP-2 knockdown with siRNA and pharmacological inhibition of MMP activity with OA-HY. The results showed consistent MMP-2 secretion by the HLMVECs, whereas a low level production was seen in the MDA-MB-231 cells. Inhibition of MMP-2 expression or activity in HLMVECs significantly attenuated the transmigration of MDA-MB-231 cells across an endothelial monolayer barrier grown on a reconstituted basement membrane. The data provide evidence supporting a potential role for the endothelial production of MMPs in promoting cancer cell extravasation. We suggest that the interaction between malignant cells and peritumoral benign tissues including the vascular endothelium may serve as an important mechanism in the regulation of tumor invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abeloff MD (2004) Cancer of the breast. In: Abeloff MD (ed) Clinical oncology, 3rd edn. Churchill Livingstone, New York

    Google Scholar 

  2. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  PubMed  CAS  Google Scholar 

  3. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. DDT 6:478–482

    PubMed  CAS  Google Scholar 

  4. Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43

    PubMed  CAS  Google Scholar 

  5. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activiates TGF-β and promotes tumor invasion and angiogenesis. Genes & Dev 14:163–176

    Google Scholar 

  6. Ata N, Oku T, Hattori M et al (1996) Inhibition by galloylglucose (GG6-10) of tumor invasion through extracellular matrix and gelatinase-mediated degradation of type IV collagens by metastatic tumor cells. Oncol Res 8:503–511

    PubMed  CAS  Google Scholar 

  7. Elkin M, Reich R, Nagler A et al (1999) Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin Cancer Res 5:1982–1988

    PubMed  CAS  Google Scholar 

  8. Zervos EE, Shafii AE, Hag M et al (1999) Matrix metalloproteinase inhibition suppresses MMP-2 activity and activation of PANC-1 cells in vitro. J Surg Res 84:162–167

    Article  PubMed  CAS  Google Scholar 

  9. Denkert C, Siegert A, Leciere A et al (2002) An inhibitor of stress-activated MAP-kinase reduces invasion and MMP-2 expression of malignant melanoma cells. Clin Exp Metastasis 19:79–85

    Article  PubMed  CAS  Google Scholar 

  10. Prontera C, Mariani B, Rossi C et al (1999) Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer 81:761–766

    Article  PubMed  CAS  Google Scholar 

  11. Nozaki S, Sissons S, Chien DS et al (2003) Activity of biphenyl matrix metalloproteinase inhibitor BAY 12–9566 in a human breast cancer orthotopic model. Clin Exp Metastasis 20:407–412

    Article  PubMed  CAS  Google Scholar 

  12. Yoneda T, Sasaki A, Dunstan C, et al (1997) Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphophonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 99:2509–2517

    Article  PubMed  CAS  Google Scholar 

  13. Yuan SY (2000) Signal transduction pathways in enhanced microvascular permeability. Microcirc 7:395–403

    Article  CAS  Google Scholar 

  14. Nicolson GL (1989) Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Curr Opin Cell Biol 1:1009–1019

    Article  PubMed  CAS  Google Scholar 

  15. Emonard H, Marcq V, Mirand C et al (1999) Inhibition of gelatinase A by oleic acid. Ann NY Acad Sci 878:647–649

    Article  PubMed  CAS  Google Scholar 

  16. Xinbo Liao J, Thrasher B, Pelling J et al (2003) Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 144:1656–1663

    Article  PubMed  CAS  Google Scholar 

  17. Tinsley JH, Breslin JW, Teasdale NR, Yuan SY. (2005) PKC-dependent, burn-induced adherens junction reorganization and barrier dysfunction in pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 289:L217–L223

    Article  PubMed  CAS  Google Scholar 

  18. Breslin JW, Yuan SY (2004) Involvement of RhoA, Rho kinase in neutrophil-stimulated endothelial hyperpermeability. Am J Physiol Heart Circ Physiol 286:H1057–H1062

    Article  PubMed  CAS  Google Scholar 

  19. Jardines L, Callans LS, Torosian MH (1993) Recurrent breast cancer: presentation, diagnosis, and treatment. Semin Oncol 20:538–547

    PubMed  CAS  Google Scholar 

  20. Tester AM, Waltham M, Oh SJ et al (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658

    Article  PubMed  CAS  Google Scholar 

  21. Ko CH, Shen SC, Lee TJ et al (2005) Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol Cancer Ther 4:281–290

    PubMed  CAS  Google Scholar 

  22. Aye MM, Ma C, Lin H et al (2004) Ethanol-induced in vitro invasion of breast cancer cells: the contribution of mmp-2 by fibroblasts. Int J Cancer 112:738–746

    Article  PubMed  CAS  Google Scholar 

  23. Taylor PM, Woodfield RJ, Hodgkin MN et al (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A2 and 5-lipxygenase catalyzed pathway. Oncogene 21:5765–5772

    Article  PubMed  CAS  Google Scholar 

  24. Stark AM, Anuszkiewicz B, Mentlein R et al (2007) Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol 81:39–48

    Article  PubMed  CAS  Google Scholar 

  25. Szabo KA, Singh G (2005) Modulation of monocyte matrix metalloproteinase-2 by breast adenocarcinoma cells. Breast Cancer Res 7:R661–R668

    Article  PubMed  CAS  Google Scholar 

  26. McKerrow JH, Bharagava V, Hansell E et al (2000) A functional proteomics screen of proteases in colorectal carcinoma. Mol Med 6:450–460

    PubMed  CAS  Google Scholar 

  27. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  28. Hofmann UB, Eggert AAO, Blass K et al (2005) Stromal cells as the major source for matrix metalloproteinase-2 in cutaneous melanoma. Arch Dermatol Res 297:154–160

    Article  PubMed  CAS  Google Scholar 

  29. Tang Y, Kesavan P, Nakada MT et al (2004) Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2:73–80

    PubMed  CAS  Google Scholar 

  30. Caudroy S, Polette M, Nawrocki-Raby B et al (2002) EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis 19:697–702

    Article  PubMed  CAS  Google Scholar 

  31. Caudroy S, Polette M, Tournier JM et al (1999) Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. JHC 47:1575–1580

    CAS  Google Scholar 

  32. Strongin AY, Collier I, Bannikov G et al (1995) Mechanism of cell surface activation of 72-kDa Type IV collagenase. J Biol Chem 270:5331–5338

    Article  PubMed  CAS  Google Scholar 

  33. Jiang WG, Davies G, Martin TA et al (2006) Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int J Mol Med 17:583–590

    PubMed  Google Scholar 

  34. Ueno H, Nakamura H, Inoue M et al (1997) Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 57:2055–2060

    PubMed  CAS  Google Scholar 

  35. Ellerbroek SM, Stack MS. (1999) Membrane associated matrix metalloproteinases in metastasis. BioEssays 21:940–949

    Article  PubMed  CAS  Google Scholar 

  36. Pulyaeva H, Bueno J, Polette M, Birembaut P, Sato H, Seiki M, Thompson EW (1997) MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 15:111–120

    Article  PubMed  CAS  Google Scholar 

  37. Duffy MJ, Maguire TM, Hill A et al (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257

    Article  PubMed  CAS  Google Scholar 

  38. Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43:265–275

    Article  PubMed  CAS  Google Scholar 

  39. Tinsley JH, Wu MH, Ma W, Taulman AC, Yuan SY (1999) Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J Biol Chem 274:24930–24934

    Article  PubMed  CAS  Google Scholar 

  40. Yuan SY, Wu MH, Ustinova EE, Guo M, Tinsley JH, De Lanerolle P, Xu W (2002) Myosin light chain phosphorylation in neutrophil-stimulated coronary microvascular leakage. Circ Res 90:1214–1221

    Article  PubMed  CAS  Google Scholar 

  41. Breslin JW, Sun H, Xu W, Rodarte C, Moy AB, Wu MH, Yuan SY (2006) Involvement of ROCK-mediated endothelial tension development in neutrophil stimulated microvascular leakage. Am J Physiol Heart Circ Physiol 290:H741–H750

    Article  PubMed  CAS  Google Scholar 

  42. Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y, Patthy L, Godeau G, Hornebeck W, Bellon G, Emonard H (2001) Inovlovement of fibronecting type II repeats in the efficient inhibition of gelatinases A and B. J Biol Chem 276:20458–20465

    Article  PubMed  CAS  Google Scholar 

  43. Huet E, Cauchard JH, Berton A, Robinet A, Decarme M, Hornebeck W, Bellon G (2004) Inhibition of plasmin-mediated prostromelysin-1 activation by interaction of long chain unsaturated fatty acids with kringle 5. Biochem Pharmacol 67:643–654

    Article  PubMed  CAS  Google Scholar 

  44. Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22:205–222

    Article  PubMed  CAS  Google Scholar 

  45. Meehan WJ, Welch DR (2003) Breast cancer metastasis suppressor 1: update. Clin Exp Metastasis 20:45–50

    Article  PubMed  CAS  Google Scholar 

  46. Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the NIH grants HL073324, HL061507, and HL084542.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mack H. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargozaran, H., Yuan, S.Y., Breslin, J.W. et al. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin Exp Metastasis 24, 495–502 (2007). https://doi.org/10.1007/s10585-007-9086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9086-6

Keywords

Navigation