Skip to main content

Advertisement

Log in

Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The liver is the most common site for metastasis by colorectal cancer, and numerous studies have shown a relationship between serum carcinoembryonic antigen (CEA) levels and metastasis to this site. CEA activates hepatic macrophages or Kupffer cells via binding to the CEA receptor (CEA-R), which results in the production of cytokines and the up-regulation of endothelial adhesion molecules, both of which are implicated in hepatic metastasis. Since tissue macrophages implicated in the metastatic process can often be difficult to isolate, the aim of this study was to develop an in vitro model system to study the complex mechanisms of CEA-induced macrophage activation and metastasis. Undifferentiated, human monocytic THP-1 (U-THP) cells were differentiated (D-THP) to macrophages by exposure to 200 ng/ml phorbol myristate acetate (PMA) for 18 h. Immunohistochemistry showed two CEA-R isoforms present in both U- and D-THP cells. The receptors were localized primarily to the nucleus in U-THP cells, while a significant cell-surface presence was observed following PMA-differentiation. Incubation of D-THP-1 cells with CEA resulted in a significant increase in tumor necrosis factor-alpha (TNF-α) release over 24 h compared to untreated D-THP-1 or U-THP controls confirming the functionality of these cell surface receptors. U-THP cells were unresponsive to CEA. Attachment of HT-29 cells to human umbilical vein endothelial cells significantly increased at 1 h after incubation with both recombinant TNF-α and conditioned media from CEA stimulated D-THP cells by six and eightfold, respectively. This study establishes an in vitro system utilizing a human macrophage cell line expressing functional CEA-Rs to study activation and signaling mechanisms of CEA that facilitate tumor cell attachment to activated endothelial cells. Utilization of this in vitro system may lead to a more complete understanding of the expression and function of CEA-R and facilitate the design of anti-CEA-R therapeutic modalities that may significantly diminish the metastatic potential of CEA overexpressing colorectal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wahl LM, Kleinman HK (1998) Tumor-associated macrophages as targets for cancer therapy. J Natl Cancer Inst 90(21):1583–1584

    Article  PubMed  CAS  Google Scholar 

  2. Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D et al (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76(2):359–367

    Article  PubMed  CAS  Google Scholar 

  3. Knowles H, Leek R, Harris AL (2004) Macrophage infiltration and angiogenesis in human malignancy. Novartis Found Symp 256:189–200; Discussion 200–284, 259–269

    PubMed  CAS  Google Scholar 

  4. Ohno S, Suzuki N, Ohno Y et al (2003) Tumor-associated macrophages: foe or accomplice of tumors? Anticancer Res 23(6a):4395–4409

    PubMed  CAS  Google Scholar 

  5. Oosterling SJ, van der Bij GJ, Meijer GA et al (2005) Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol 207(2):147–155

    Article  PubMed  Google Scholar 

  6. Parker GA, Picut CA (2005) Liver immunobiology. Toxicol Pathol 33(1):52–62

    Article  PubMed  CAS  Google Scholar 

  7. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  PubMed  CAS  Google Scholar 

  8. Weiss L, Grundmann E, Torhorst J et al (1986) Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol 150(3):195–203

    Article  PubMed  CAS  Google Scholar 

  9. Bayon LG, Izquierdo MA, Sirovich I et al (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23(5):1224–1231

    Article  PubMed  CAS  Google Scholar 

  10. Hostetter RB, Augustus LB, Mankarious R et al (1990) Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastasis. J Natl Cancer Inst 82(5):380–385

    Article  PubMed  CAS  Google Scholar 

  11. Thomas P, Gangopadhyay A, Steele G Jr et al (1995) The effect of transfection of the CEA gene on the metastatic behavior of the human colorectal cancer cell line MIP-101. Cancer Lett 92(1):59–66

    Article  PubMed  CAS  Google Scholar 

  12. Stanners CP (1998) Cell adhesion and communication mediated by the CEA family: basic and clinical perspectives, vol xvii. Harwood Academic Publishers, Amsterdam, p 306

    Google Scholar 

  13. Minami S, Furui J, Kanematsu T (2001) Role of carcinoembryonic antigen in the progression of colon cancer cells that express carbohydrate antigen. Cancer Res 61(6):2732–2735

    PubMed  CAS  Google Scholar 

  14. Thomas P, Toth CA (1990) Carcinoembryonic antigen binding to Kupffer cells is via a peptide located at the junction of the N-terminal and first loop domains. Biochem Biophys Res Commun 170(1):391–396

    Article  PubMed  CAS  Google Scholar 

  15. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81

    Article  PubMed  CAS  Google Scholar 

  16. Marx J (2004) Cancer research. Inflammation and cancer: the link grows stronger. Science 306(5698):966–968

    Article  PubMed  CAS  Google Scholar 

  17. Jessup JM, Giavazzi R, Campbell D et al (1988) Growth potential of human colorectal carcinomas in nude mice: association with the preoperative serum concentration of carcinoembryonic antigen in patients. Cancer Res 48(6):1689–1692

    PubMed  CAS  Google Scholar 

  18. Toth CA, Thomas P, Broitman SA et al (1985) Receptor-mediated endocytosis of carcinoembryonic antigen by rat liver Kupffer cells. Cancer Res 45(1):392–397

    PubMed  CAS  Google Scholar 

  19. Bajenova OV, Zimmer R, Stolper E et al (2001) Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells. J Biol Chem 276(33):31067–31073

    Article  PubMed  CAS  Google Scholar 

  20. Bajenova O, Stolper E, Gapon S et al (2003) Surface expression of heterogeneous nuclear RNA binding protein M4 on Kupffer cell relates to its function as a carcinoembryonic antigen receptor. Exp Cell Res 291(1):228–241

    Article  PubMed  CAS  Google Scholar 

  21. Laguinge L, Bajenova O, Bowden E et al (2005) Surface expression and CEA binding of hnRNP M4 protein in HT29 colon cancer cells. Anticancer Res 25(1A):23–31

    PubMed  CAS  Google Scholar 

  22. Gangopadhyay A, Bajenova O, Kelly TM et al (1996) Carcinoembryonic antigen induces cytokine expression in Kuppfer cells: implications for hepatic metastasis from colorectal cancer. Cancer Res 56(20):4805–4810

    PubMed  CAS  Google Scholar 

  23. Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111(3):332–337

    Article  PubMed  CAS  Google Scholar 

  24. Nelson H, Ramsey PS, Donohue JH et al (1994) Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clin Immunol Immunopathol 72(1):129–136

    Article  PubMed  CAS  Google Scholar 

  25. Brodt P, Fallavollita L, Bresalier RS et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71(4):612–619

    Article  PubMed  CAS  Google Scholar 

  26. Laferriere J, Houle F, Taher MM et al (2001) Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem 276(36):33762–33772

    Article  PubMed  CAS  Google Scholar 

  27. Hostetter RB, Campbell DE, Chi KF et al (1990) Carcinoembryonic antigen enhances metastatic potential of human colorectal carcinoma. Arch Surg 125(3):300–304

    PubMed  CAS  Google Scholar 

  28. Toth CA, Thomas P, Broitman SA et al (1982) A new Kupffer cell receptor mediating plasma clearance of carcinoembryonic antigen by the rat. Biochem J 204(2):377–381

    PubMed  CAS  Google Scholar 

  29. Shiratsuch H, Basson MD (2005) Differential regulation of monocyte/macrophage cytokine production by pressure. Am J Surg 190(5):757–762

    Article  PubMed  CAS  Google Scholar 

  30. Foreman KE, Vaporciyan AA, Bonish BK et al (1994) C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 94(3):1147–1155

    Article  PubMed  CAS  Google Scholar 

  31. Gupta B, Ghosh B (1999) Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol 21(11):745–757

    Article  PubMed  CAS  Google Scholar 

  32. Madan B, Singh I, Kumar A et al (2002) Xanthones as inhibitors of microsomal lipid peroxidation and TNF-alpha induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs). Bioorg Med Chem 10(11):3431–3436

    Article  PubMed  CAS  Google Scholar 

  33. Sasakawa T, Sasakawa Y, Masunaga T et al (2005) FK506 suppresses E-selectin, ICAM-1 and VCAM-1 expression on vascular endothelial cells by inhibiting tumor necrosis factor alpha secretion from peripheral blood mononuclear cells. Cytokine 29(2):67–71

    Article  PubMed  CAS  Google Scholar 

  34. Hiscox S, Jiang WG (1997) Quantification of tumour cell-endothelial cell attachment by 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine (DiI). Cancer Lett 112(2):209–217

    Article  PubMed  CAS  Google Scholar 

  35. Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106–130

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Supported by the Smithwlck Funds, Department of Surgery, Boston Medical Center and NIH grant CA74941 (PT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. Stucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarons, C.B., Bajenova, O., Andrews, C. et al. Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells. Clin Exp Metastasis 24, 201–209 (2007). https://doi.org/10.1007/s10585-007-9069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9069-7

Keywords

Navigation