Skip to main content
Log in

Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DRB:

daunorubicin

DRBM:

morpholine derivative of daunorubicin

DRBH:

hexamethyleneimine derivative of daunorubicin

ICRF-193:

meso-2,3-bis(3,5-dioxopiperazinyl)butane

References

  • Andoh T, Ishida R. Catalytic inhibitors of DNA topoisomerase II. Biochim Biophys Acta. 1998;1400:155–71.

    CAS  PubMed  Google Scholar 

  • Binaschi M, Farinosi R, Austin CA, Fisher LM, Zunino F, Capranico G. Human DNA topoisomerase II alpha-dependent DNA cleavage and yeast cell killing by anthracycline analogues. Cancer Res 1998;58:1886–92.

    CAS  PubMed  Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of tetrazolium-based semiautomatic colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936–42.

    CAS  PubMed  Google Scholar 

  • Cullinane C, Cutts SM, Panousis C, Philips DR. Interstrand crosslinking by adriamycin in nuclear and mitochondrial DNA of MCF-7 cells. Nucleic Acids Res. 2000;28:1019–25.

    Article  CAS  PubMed  Google Scholar 

  • Fornace AJ, Dobson PP, Kinsella TJ. Analysis of the effect of DNA alkylation on alkaline elution. Carcinogenesis. 1986;7:927–32.

    CAS  PubMed  Google Scholar 

  • Guano F, Pourquier P, Tinelli S, et al. Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol. 2001;56:77–84.

    Google Scholar 

  • Jensen LH, Dejligbjerg M, Hansen LT, Grauslund M, Jensen PB, Sehested M. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells. BMC Pharmacol. 2004;4:31.

    Article  PubMed  Google Scholar 

  • Kohn KW. Principles and practice of DNA filter elution Pharmacol Ther. 1991;49:55–77.

    Article  PubMed  Google Scholar 

  • Lotfi K, Zackrisson A-L, Peterson C. Comparison of idarubicin and daunorubicin regarding intracellular uptake, induction of apoptosis and resistance. Cancer Letters. 2002;178:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Madej J, Dzimira S, Wsowska M, et al. New derivatives of anthracycline antibiotics with lower cardiotoxicity. First ISC International Conference on Cancer Therapeutics Molecular Targets, Pharmacology and Clinical Applications. J Chemother. 2004;16(supplement 1):154.

    Google Scholar 

  • Monneret C. Recent developments in the field of antitumor anthracyclines. Eur J Med Chem. 2001;36:483–93.

    Article  CAS  PubMed  Google Scholar 

  • Opolski A, Wsowska M, Wietrzyk J, Nasulewicz A, Oszczapowicz I, Oszczapowicz J. Properties of the new anthracycline derivatives, containing modified daunosamine moiety. Symposium on Molecular Targets and Cancer Therapeutics. Frankfurt 19–22 November 2002. Eur J Cancer. 2002;38(supplement 7):47.

    Google Scholar 

  • Oszczapowicz I, Grodner J, Glazman-Kuśnierczyk H, Radzikowski C, Opolski A. Polish Patent Application No. 321175; 1997.

  • Patel S, Jazrawi E, Creighton AM, Austin CA, Fisher LM. Probing the interaction of the cytotoxic bisdioxopiperazine ICRF-193 with the closed enzyme clamp of human topoisomerase II. Mol Pharmacol. 2000;58:560–8.

    CAS  PubMed  Google Scholar 

  • Pawłowska J, Tarasiuk J, Borowski E, Wąsowska M, Oszczapowicz I, Wolf CR. The ability of new formamidine sugar-modified derivatives of daunorubicine to stimulate free radical formation in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase and xanthine oxidase. Acta Biochim Pol. 2000;47:141–47.

    PubMed  Google Scholar 

  • Piestrzeniewicz MK, Wilmanska D, Szmraj J, Studzian K, Gniazdowski M. Interactions of novel morpholine and hexamethylene derivatives of anthracycline antibiotics with DNA. Z Naturforsch. 2004;59c:739–48.

    Google Scholar 

  • Riganti C, Miraglia E, Viarisio D, et al. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 2005;65:516–25.

    CAS  PubMed  Google Scholar 

  • Sehested M, Jensen PB. Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochem Pharmacol. 1996;51:879–86.

    Article  CAS  PubMed  Google Scholar 

  • Sessa C, Zucchetti M, Ghelmini M, et al. Phase I clinical and pharmacological study of oral methoxymorpholinyl doxorubicin (PNU 152243). Cancer Chemother Pharmacol. 1999;44:403–10.

    Article  CAS  PubMed  Google Scholar 

  • Strniste GF, Rall SC. Induction of stable protein deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light. Biochemistry. 1976;15:1712–9.

    Article  CAS  PubMed  Google Scholar 

  • Studzian K, Wąsowska M, Piestrzeniewicz MK, et al. Inhibition of RNA synthesis in vitro and cell growth by anthracycline antibiotics. Neoplasma. 2001;48:412–8.

    CAS  PubMed  Google Scholar 

  • Taatjes DJ, Fenick DJ, Gaudiano G, Koch TH. A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines, application to the design of antitumor drugs for resistant cancer. Curr Pharm Des. 1998;.4:203–18.

    CAS  PubMed  Google Scholar 

  • Walicka M, Szmigiero L, Ciesielska E, Gradzka I. Are lethal effects of nitracrine on L5178Y cell sublines associated with DNA–protein cross-links? Biochem Pharmacol. 1993;46:615–20.

    Article  CAS  PubMed  Google Scholar 

  • Wasserman K, Markovits J, Jaxel C, Capranicao G, Kohn KW, Pommier Y. Effects morpholinyl doxorubicins, daunorubicins, and actinomycin D on mammalin DNA topoisomerase I and II. Mol Pharmacol. 1990;38:38–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Szmigiero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciesielska, E., Studzian, K., Wąsowska, M. et al. Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety. Cell Biol Toxicol 21, 139–147 (2005). https://doi.org/10.1007/s10565-005-0142-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-005-0142-1

Keywords

Navigation