Skip to main content

Advertisement

Log in

Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit?

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Enhanced drug extrusion from cells due to the overexpression of the ATP-binding cassette (ABC) drug transporters inhibits the cytotoxic effects of structurally diverse and mechanistically unrelated anticancer agents and is a major cause of multidrug resistance (MDR) of human malignancies. Multiple compounds can suppress the activity of these efflux transporters and sensitize resistant tumor cells, but despite promising preclinical and early clinical data, they have yet to find a role in oncologic practice. Based on the knowledge of the structure, function, and distribution of MDR-related ABC transporters and the results of their preclinical and clinical evaluation, we discuss probable reasons why these inhibitors have not improved the outcome of therapy for cancer patients. We also outline new MDR-reversing strategies that directly target ABC transporters or circumvent relevant signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gillet, J. P., & Gottesman, M. M. (2011). Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Current Pharmaceutical Biotechnology, 12, 686–692.

    Article  PubMed  CAS  Google Scholar 

  2. Ueda, K. (2011). ABC proteins protect the human body and maintain optimal health. Bioscience, Biotechnology, and Biochemistry, 75, 401–409.

    Article  PubMed  CAS  Google Scholar 

  3. Juliano, R. L., & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta, 455, 152–162.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou, S. F. (2008). Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 38, 802–832.

    Article  PubMed  CAS  Google Scholar 

  5. Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2003). Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. Journal of Biological Chemistry, 278, 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  6. Aller, S. G., et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 323, 1718–1722.

    Article  PubMed  CAS  Google Scholar 

  7. Fromm, M. F. (2004). Importance of P-glycoprotein at blood–tissue barriers. Trends in Pharmacological Sciences, 25, 423–429.

    Article  PubMed  CAS  Google Scholar 

  8. Schinkel, A. H. (1997). The physiological function of drug-transporting P-glycoproteins. Seminars in Cancer Biology, 8, 161–170.

    Article  PubMed  CAS  Google Scholar 

  9. Sarkadi, B., Homolya, L., Szakacs, G., & Varadi, A. (2006). Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiological Reviews, 86, 1179–1236.

    Article  PubMed  CAS  Google Scholar 

  10. Tainton, K. M., et al. (2004). Mutational analysis of P-glycoprotein: Suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death and Differentiation, 11, 1028–1037.

    Article  PubMed  CAS  Google Scholar 

  11. Pendse, S. S., et al. (2006). P-glycoprotein functions as a differentiation switch in antigen presenting cell maturation. American Journal of Transplantation, 6, 2884–2893.

    Article  PubMed  CAS  Google Scholar 

  12. Izawa, A., et al. (2010). A novel in vivo regulatory role of P-glycoprotein in alloimmunity. Biochemical and Biophysical Research Communications, 394, 646–652.

    Article  PubMed  CAS  Google Scholar 

  13. Cole, S. P., et al. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, Z. S., & Tiwari, A. K. (2011). Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS Journal, 278, 3226–3245.

    Article  PubMed  CAS  Google Scholar 

  15. Wijnholds, J., et al. (2000). Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood–cerebrospinal fluid barrier. The Journal of Clinical Investigation, 105, 279–285.

    Article  PubMed  CAS  Google Scholar 

  16. van der Deen, M., et al. (2005). ATP-binding cassette (ABC) transporters in normal and pathological lung. Respiratory Research, 6, 59.

    Article  PubMed  CAS  Google Scholar 

  17. Nagashige, M., et al. (2003). Basal membrane localization of MRP1 in human placental trophoblast. Placenta, 24, 951–958.

    Article  PubMed  CAS  Google Scholar 

  18. Cole, S. P., & Deeley, R. G. (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends in Pharmacological Sciences, 27, 438–446.

    Article  PubMed  CAS  Google Scholar 

  19. Renes, J., de Vries, E. G., Nienhuis, E. F., Jansen, P. L., & Muller, M. (1999). ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. British Journal of Pharmacology, 126, 681–688.

    Article  PubMed  CAS  Google Scholar 

  20. Mueller, C. F., et al. (2005). The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circulation Research, 97, 637–644.

    Article  PubMed  CAS  Google Scholar 

  21. Wijnholds, J., et al. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 3, 1275–1279.

    Article  PubMed  CAS  Google Scholar 

  22. Allen, J. D., Brinkhuis, R. F., van Deemter, L., Wijnholds, J., & Schinkel, A. H. (2000). Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Research, 60, 5761–5766.

    PubMed  CAS  Google Scholar 

  23. Keppler, D. (2011). Multidrug resistance proteins (MRPs, ABCCs): Importance for pathophysiology and drug therapy. Handbook of Experimental Pharmacology, 201, 299–323.

    Article  PubMed  CAS  Google Scholar 

  24. Doyle, L. A., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  25. Ni, Z., Bikadi, Z., Rosenberg, M. F., & Mao, Q. (2010). Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Current Drug Metabolism, 11, 603–617.

    Article  PubMed  CAS  Google Scholar 

  26. van Herwaarden, A. E., et al. (2007). Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Molecular and Cellular Biology, 27, 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  27. Assaraf, Y. G. (2006). The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates, 9, 227–246.

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki, M., Suzuki, H., Sugimoto, Y., & Sugiyama, Y. (2003). ABCG2 transports sulfated conjugates of steroids and xenobiotics. Journal of Biological Chemistry, 278, 22644–22649.

    Article  PubMed  CAS  Google Scholar 

  29. Redmond, K. M., Wilson, T. R., Johnston, P. G., & Longley, D. B. (2008). Resistance mechanisms to cancer chemotherapy. Frontiers in Bioscience, 13, 5138–5154.

    Article  PubMed  CAS  Google Scholar 

  30. Leith, C. P., et al. (1997). Acute myeloid leukemia in the elderly: Assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood, 89, 3323–3329.

    PubMed  CAS  Google Scholar 

  31. van den Heuvel-Eibrink, M. M., et al. (1997). MDR 1 expression is an independent prognostic factor for response and survival in de novo acute myeloid leukaemia. British Journal of Haematology, 99, 76–83.

    Article  PubMed  Google Scholar 

  32. Burger, H., et al. (2003). RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: Correlation with chemotherapeutic response. Clinical Cancer Research, 9, 827–836.

    PubMed  CAS  Google Scholar 

  33. Chan, H. S., Grogan, T. M., Haddad, G., DeBoer, G., & Ling, V. (1997). P-glycoprotein expression: Critical determinant in the response to osteosarcoma chemotherapy. Journal of the National Cancer Institute, 89, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  34. Trock, B. J., Leonessa, F., & Clarke, R. (1997). Multidrug resistance in breast cancer: A meta-analysis of MDR1/gp170 expression and its possible functional significance. Journal of the National Cancer Institute, 89, 917–931.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou, D. C., Zittoun, R., & Marie, J. P. (1995). Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia, 9, 1661–1666.

    PubMed  CAS  Google Scholar 

  36. Grogan, T. M., et al. (1993). P-glycoprotein expression in human plasma cell myeloma: Correlation with prior chemotherapy. Blood, 81, 490–495.

    PubMed  CAS  Google Scholar 

  37. Chevillard, S., et al. (1996). Sequential assessment of multidrug resistance phenotype and measurement of S-phase fraction as predictive markers of breast cancer response to neoadjuvant chemotherapy. Cancer, 77, 292–300.

    Article  PubMed  CAS  Google Scholar 

  38. Kimura, Y., et al. (2002). P-glycoprotein inhibition by the multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemotherapy and Pharmacology, 49, 322–328.

    Article  PubMed  CAS  Google Scholar 

  39. Hyafil, F., Vergely, C., Du Vignaud, P., & Grand-Perret, T. (1993). In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Research, 53, 4595–4602.

    PubMed  CAS  Google Scholar 

  40. Dantzig, A. H., et al. (1996). Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Research, 56, 4171–4179.

    PubMed  CAS  Google Scholar 

  41. Pajic, M., et al. (2009). Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Research, 69, 6396–6404.

    Article  PubMed  CAS  Google Scholar 

  42. Mistry, P., et al. (2001). In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Research, 61, 749–758.

    PubMed  CAS  Google Scholar 

  43. Naito, M., Matsuba, Y., Sato, S., Hirata, H., & Tsuruo, T. (2002). MS-209, a quinoline-type reversal agent, potentiates antitumor efficacy of docetaxel in multidrug-resistant solid tumor xenograft models. Clinical Cancer Research, 8, 582–588.

    PubMed  Google Scholar 

  44. McDevitt, C. A., & Callaghan, R. (2007). How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacology and Therapeutics, 113, 429–441.

    Article  PubMed  CAS  Google Scholar 

  45. Solary, E., et al. (2003). Quinine as a multidrug resistance inhibitor: A phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood, 102, 1202–1210.

    Article  PubMed  CAS  Google Scholar 

  46. Solary, E., et al. (1996). Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: A randomized multicenter study. Blood, 88, 1198–1205.

    PubMed  CAS  Google Scholar 

  47. Ozols, R. F., et al. (1987). Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. Journal of Clinical Oncology, 5, 641–647.

    PubMed  CAS  Google Scholar 

  48. Millward, M. J., et al. (1993). Oral verapamil with chemotherapy for advanced non-small cell lung cancer: A randomised study. British Journal of Cancer, 67, 1031–1035.

    Article  PubMed  CAS  Google Scholar 

  49. Milroy, R. (1993). A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. British Journal of Cancer, 68, 813–818.

    Article  PubMed  CAS  Google Scholar 

  50. Chico, I., et al. (2001). Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. Journal of Clinical Oncology, 19, 832–842.

    PubMed  CAS  Google Scholar 

  51. Baer, M. R., et al. (2002). Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood, 100, 1224–1232.

    PubMed  CAS  Google Scholar 

  52. Saeki, T., et al. (2007). Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. Journal of Clinical Oncology, 25, 411–417.

    Article  PubMed  CAS  Google Scholar 

  53. Germann, U. A., et al. (1997). Cellular and biochemical characterization of VX-710 as a chemosensitizer: Reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anti-Cancer Drugs, 8, 125–140.

    Article  PubMed  CAS  Google Scholar 

  54. Minderman, H., O’Loughlin, K. L., Pendyala, L., & Baer, M. R. (2004). VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clinical Cancer Research, 10, 1826–1834.

    Article  PubMed  CAS  Google Scholar 

  55. Gandhi, L., et al. (2007). A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer, 109, 924–932.

    Article  PubMed  CAS  Google Scholar 

  56. Hubensack, M., et al. (2008). Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. Journal of Cancer Research and Clinical Oncology, 134, 597–607.

    Article  PubMed  CAS  Google Scholar 

  57. Jonker, J. W., et al. (2000). Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. Journal of the National Cancer Institute, 92, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  58. Kruijtzer, C. M., et al. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950.

    Article  PubMed  CAS  Google Scholar 

  59. Kuppens, I. E., et al. (2007). A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clinical Cancer Research, 13, 3276–3285.

    Article  PubMed  CAS  Google Scholar 

  60. Gerrard, G., et al. (2004). Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica, 89, 782–790.

    PubMed  CAS  Google Scholar 

  61. Morschhauser, F., et al. (2007). Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leukemia & Lymphoma, 48, 708–715.

    Article  CAS  Google Scholar 

  62. Cripe, L. D., et al. (2010). Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: A randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood, 116, 4077–4085.

    Article  PubMed  CAS  Google Scholar 

  63. Pusztai, L., et al. (2005). Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 104, 682–691.

    Article  PubMed  CAS  Google Scholar 

  64. Fox, E., & Bates, S. E. (2007). Tariquidar (XR9576): A P-glycoprotein drug efflux pump inhibitor. Expert Review of Anticancer Therapy, 7, 447–459.

    Article  PubMed  CAS  Google Scholar 

  65. Ferguson, P. J., Brisson, A. R., Koropatnick, J., & Vincent, M. D. (2009). Enhancement of cytotoxicity of natural product drugs against multidrug resistant variant cell lines of human head and neck squamous cell carcinoma and breast carcinoma by tesmilifene. Cancer Letters, 274, 279–289.

    Article  PubMed  CAS  Google Scholar 

  66. Vincent, M. (2006). Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Medical Hypotheses, 66, 715–731.

    Article  PubMed  CAS  Google Scholar 

  67. Reyno, L., et al. (2004). Phase III study of N,N-diethyl-2-[4-(phenylmethyl) phenoxy]ethanamine (BMS-217380-01) combined with doxorubicin versus doxorubicin alone in metastatic/recurrent breast cancer: National Cancer Institute of Canada Clinical Trials Group Study MA.19. Journal of Clinical Oncology, 22, 269–276.

    Article  PubMed  CAS  Google Scholar 

  68. Robey, R. W., et al. (2008). Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochemical Pharmacology, 75, 1302–1312.

    Article  PubMed  CAS  Google Scholar 

  69. Oldham, R. K., Reid, W. K., Preisler, H. D., & Barnett, D. (1998). A phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer. Cancer Biotherapy & Radiopharmaceuticals, 13, 71–80.

    Article  CAS  Google Scholar 

  70. Kelly R.J., et al. (2012). A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist, 17(4), 512.

    Google Scholar 

  71. Popoli, P., Pezzola, A., Benedetti, M., & Scotti de Carolis, A. (1992). Verapamil and flunarizine inhibit phencyclidine-induced effects: An EEG and behavioural study in rats. Neuropharmacology, 31, 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  72. Akimoto, H., et al. (1993). Effect of verapamil on doxorubicin cardiotoxicity: Altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research, 53, 4658–4664.

    PubMed  CAS  Google Scholar 

  73. Borel, J. F., et al. (1996). In vivo pharmacological effects of ciclosporin and some analogues. Advances in Pharmacology, 35, 115–246.

    Article  PubMed  CAS  Google Scholar 

  74. Kim, R. B., et al. (1999). Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharmaceutical Research, 16, 408–414.

    Article  PubMed  CAS  Google Scholar 

  75. Patel, J., & Mitra, A. K. (2001). Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics, 2, 401–415.

    Article  PubMed  CAS  Google Scholar 

  76. Eckford, P. D., & Sharom, F. J. (2009). ABC efflux pump-based resistance to chemotherapy drugs. Chemical Reviews, 109, 2989–3011.

    Article  PubMed  CAS  Google Scholar 

  77. Roy, S., et al. (2007). MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Research, 27, 1325–1330.

    PubMed  CAS  Google Scholar 

  78. Li, J., et al. (2009). Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: Correlation with response to chemotherapy and survival. Clinical Lung Cancer, 10, 414–421.

    Article  PubMed  CAS  Google Scholar 

  79. Robey, R. W., et al. (2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Research, 64, 1242–1246.

    Article  PubMed  CAS  Google Scholar 

  80. Hoffmeyer, S., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 3473–3478.

    Article  PubMed  CAS  Google Scholar 

  81. Ozawa, S., et al. (2004). Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metabolism and Pharmacokinetics, 19, 83–95.

    Article  PubMed  CAS  Google Scholar 

  82. Cascorbi, I. (2006). Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology and Therapeutics, 112, 457–473.

    Article  PubMed  CAS  Google Scholar 

  83. Kimchi-Sarfaty, C., et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525–528.

    Article  PubMed  CAS  Google Scholar 

  84. Crouthamel, M. H., Wu, D., Yang, Z., & Ho, R. J. (2010). A novel MDR1 GT1292-3TG (Cys431Leu) genetic variation and its effect on P-glycoprotein biologic functions. The AAPS Journal, 12, 548–555.

    Article  PubMed  CAS  Google Scholar 

  85. Sakaeda, T. (2005). MDR1 genotype-related pharmacokinetics: Fact or fiction? Drug Metabolism and Pharmacokinetics, 20, 391–414.

    Article  PubMed  CAS  Google Scholar 

  86. Cascorbi I. (2011). P-glycoprotein: Tissue distribution, substrates, and functional consequences of genetic variations. Handbook of Experimental Pharmacology, (201), 261–283.

  87. Mathijssen, R. H., et al. (2003). Irinotecan pathway genotype analysis to predict pharmacokinetics. Clinical Cancer Research, 9, 3246–3253.

    PubMed  CAS  Google Scholar 

  88. Kafka, A., et al. (2003). Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. International Journal of Oncology, 22, 1117–1121.

    PubMed  CAS  Google Scholar 

  89. Green, H., Soderkvist, P., Rosenberg, P., Horvath, G., & Peterson, C. (2008). ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. Journal of Pharmaceutical Sciences, 97, 2045–2048.

    Article  PubMed  CAS  Google Scholar 

  90. Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99, 1441–1454.

    Article  PubMed  CAS  Google Scholar 

  91. Tunggal, J. K., Melo, T., Ballinger, J. R., & Tannock, I. F. (2000). The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. International Journal of Cancer, 86, 101–107.

    Article  CAS  Google Scholar 

  92. Patel, K. J., & Tannock, I. F. (2009). The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors. BMC Cancer, 9, 356.

    Article  PubMed  CAS  Google Scholar 

  93. Huxham, L. A., Kyle, A. H., Baker, J. H., Nykilchuk, L. K., & Minchinton, A. I. (2004). Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Research, 64, 6537–6541.

    Article  PubMed  CAS  Google Scholar 

  94. Tunggal, J. K., Ballinger, J. R., & Tannock, I. F. (1999). Influence of cell concentration in limiting the therapeutic benefit of P-glycoprotein reversal agents. International Journal of Cancer, 81, 741–747.

    Article  CAS  Google Scholar 

  95. Shi, T., Wrin, J., Reeder, J., Liu, D., & Ring, D. B. (1995). High-affinity monoclonal antibodies against P-glycoprotein. Clinical Immunology and Immunopathology, 76, 44–51.

    Article  PubMed  CAS  Google Scholar 

  96. Nobili S., Landini I., Mazzei T., & Mini E. (2012). Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Medicinal Research Reviews, 32, 1220–1262.

    Google Scholar 

  97. McLachlin, J. R., et al. (1990). Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. Journal of the National Cancer Institute, 82, 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  98. Mickisch, G. H., Merlino, G. T., Galski, H., Gottesman, M. M., & Pastan, I. (1991). Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 88, 547–551.

    Article  PubMed  CAS  Google Scholar 

  99. Hesdorffer, C., et al. (1998). Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. Journal of Clinical Oncology, 16, 165–172.

    PubMed  CAS  Google Scholar 

  100. Iwahashi, T., et al. (1993). Specific targeting and killing activities of anti-P-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model. Cancer Research, 53, 5475–5482.

    PubMed  CAS  Google Scholar 

  101. Mechetner, E. B., & Roninson, I. B. (1992). Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 89, 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  102. Mickisch, G. H., Pai, L. H., Gottesman, M. M., & Pastan, I. (1992). Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Research, 52, 4427–4432.

    PubMed  CAS  Google Scholar 

  103. Rittmann-Grauer, L. S., Yong, M. A., Sanders, V., & Mackensen, D. G. (1992). Reversal of Vinca alkaloid resistance by anti-P-glycoprotein monoclonal antibody HYB-241 in a human tumor xenograft. Cancer Research, 52, 1810–1816.

    PubMed  CAS  Google Scholar 

  104. Goda, K., et al. (2007). Complete inhibition of P-glycoprotein by simultaneous treatment with a distinct class of modulators and the UIC2 monoclonal antibody. Journal of Pharmacology and Experimental Therapeutics, 320, 81–88.

    Article  PubMed  CAS  Google Scholar 

  105. Krasznai, Z. T., et al. (2010). Pgp inhibition by UIC2 antibody can be followed in vitro by using tumor-diagnostic radiotracers, 99mTc-MIBI and 18FDG. European Journal of Pharmaceutical Sciences, 41, 665–669.

    Article  PubMed  CAS  Google Scholar 

  106. Watanabe, T., Naito, M., Kokubu, N., & Tsuruo, T. (1997). Regression of established tumors expressing P-glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK-16 antibodies. Journal of the National Cancer Institute, 89, 512–518.

    Article  PubMed  CAS  Google Scholar 

  107. Matsuo, H., et al. (2001). Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. Journal of Controlled Release, 77, 77–86.

    Article  PubMed  CAS  Google Scholar 

  108. Gatouillat, G., et al. (2007). Immunization with liposome-anchored pegylated peptides modulates doxorubicin sensitivity in P-glycoprotein-expressing P388 cells. Cancer Letters, 257, 165–171.

    Article  PubMed  CAS  Google Scholar 

  109. Madoulet, C., Perrin, L., Tosi, P. F., & Albert, P. (2006). Anti-tumor immunotherapy against multidrug resistance. Annales Pharmaceutiques Françaises, 64, 87–96.

    Article  PubMed  CAS  Google Scholar 

  110. Beck, W. T. (1995). Circumvention of multidrug resistance with anti-P-glycoprotein antibodies: Clinical potential or experimental artifact? Journal of the National Cancer Institute, 87, 73–75.

    Article  PubMed  CAS  Google Scholar 

  111. Comerford, K. M., et al. (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 62, 3387–3394.

    PubMed  CAS  Google Scholar 

  112. Han, Z., et al. (2007). Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. Journal of Experimental & Clinical Cancer Research, 26, 261–268.

    CAS  Google Scholar 

  113. Hu, X. F., Li, J., Yang, E., Vandervalk, S., & Xing, P. X. (2007). Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways. British Journal of Cancer, 96, 918–927.

    Article  PubMed  CAS  Google Scholar 

  114. Liu, B., Qu, L., & Tao, H. (2010). Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. Cell Biology International, 34, 21–25.

    CAS  Google Scholar 

  115. Zhang, Y., Laterra, J., & Pomper, M. G. (2009). Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia, 11, 96–101.

    PubMed  CAS  Google Scholar 

  116. Cui, D., Xu, Q., Wang, K., & Che, X. (2010). Gli1 is a potential target for alleviating multidrug resistance of gliomas. Journal of the Neurological Sciences, 288, 156–166.

    Article  PubMed  CAS  Google Scholar 

  117. Chen, T. (2010). Overcoming drug resistance by regulating nuclear receptors. Advanced Drug Delivery Reviews, 62, 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  118. Chen, Y., Tang, Y., Wang, M. T., Zeng, S., & Nie, D. (2007). Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Research, 67, 10361–10367.

    Article  PubMed  CAS  Google Scholar 

  119. Masuyama, H., Nakatsukasa, H., Takamoto, N., & Hiramatsu, Y. (2007). Down-regulation of pregnane X receptor contributes to cell growth inhibition and apoptosis by anticancer agents in endometrial cancer cells. Molecular Pharmacology, 72, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  120. Stewart, A. J., et al. (1996). Reduction of expression of the multidrug resistance protein (MRP) in human tumor cells by antisense phosphorothioate oligonucleotides. Biochemical Pharmacology, 51, 461–469.

    Article  PubMed  CAS  Google Scholar 

  121. Osada, H., et al. (2003). Reversal of drug resistance mediated by hammerhead ribozyme against multidrug resistance-associated protein 1 in a human glioma cell line. International Journal of Oncology, 22, 823–827.

    PubMed  CAS  Google Scholar 

  122. Kowalski, P., Farley, K. M., Lage, H., & Schneider, E. (2004). Effective knock down of very high ABCG2 expression by a hammerhead ribozyme. Anticancer Research, 24, 2231–2235.

    PubMed  CAS  Google Scholar 

  123. Gao, P., et al. (2007). Reversal of drug resistance in breast carcinoma cells by anti-mdr1 ribozyme regulated by the tumor-specific MUC-1 promoter. Cancer Letters, 256, 81–89.

    Article  PubMed  CAS  Google Scholar 

  124. Nadali, F., et al. (2007). Multidrug resistance inhibition by antisense oligonucleotide against MDR1/mRNA in P-glycoprotein expressing leukemic cells. Hematology, 12, 393–401.

    Article  PubMed  CAS  Google Scholar 

  125. Kowalski, P., Surowiak, P., & Lage, H. (2005). Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Molecular Therapy, 11, 508–522.

    Article  PubMed  CAS  Google Scholar 

  126. Abbasi M., Lavasanifar A., & Uluda H. (2011). Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Medicinal Research Reviews. doi:10.1002/med.20244.

  127. Stege, A., Priebsch, A., Nieth, C., & Lage, H. (2004). Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Therapy, 11, 699–706.

    Article  PubMed  CAS  Google Scholar 

  128. Yague, E., Higgins, C. F., & Raguz, S. (2004). Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Therapy, 11, 1170–1174.

    Article  PubMed  CAS  Google Scholar 

  129. Stein, U., et al. (2008). Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Molecular Therapy, 16, 178–186.

    Article  PubMed  CAS  Google Scholar 

  130. Pichler, A., Zelcer, N., Prior, J. L., Kuil, A. J., & Piwnica-Worms, D. (2005). In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clinical Cancer Research, 11, 4487–4494.

    Article  PubMed  CAS  Google Scholar 

  131. Xiao, H., et al. (2008). In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic & Clinical Pharmacology & Toxicology, 103, 342–348.

    Article  CAS  Google Scholar 

  132. Patutina, O. A., et al. (2010). The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy. BMC Cancer, 10, 204.

    Article  PubMed  CAS  Google Scholar 

  133. Sioud, M. (2011). Promises and challenges in developing RNAi as a research tool and therapy. Methods in Molecular Biology, 703, 173–187.

    Article  PubMed  CAS  Google Scholar 

  134. Blanco, E., Hsiao, A., Mann, A. P., Landry, M. G., Meric-Bernstam, F., & Ferrari, M. (2011). Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Science, 102, 1247–1252.

    Article  PubMed  CAS  Google Scholar 

  135. Patel, N. R., Rathi, A., Mongayt, D., & Torchilin, V. P. (2011). Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. International Journal of Pharmaceutics, 416, 296–299.

    Article  PubMed  CAS  Google Scholar 

  136. Wang, F., et al. (2011). Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance. Biomaterials, 32, 9444–9456.

    Article  PubMed  CAS  Google Scholar 

  137. van Vlerken, L. E., Duan, Z., Little, S. R., Seiden, M. V., & Amiji, M. M. (2008). Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Molecular Pharmaceutics, 5, 516–526.

    Article  PubMed  CAS  Google Scholar 

  138. van Vlerken, L. E., Duan, Z., Little, S. R., Seiden, M. V., & Amiji, M. M. (2010). Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. The AAPS Journal, 12, 171–180.

    Article  PubMed  CAS  Google Scholar 

  139. Meng, H., et al. (2010). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 4, 4539–4550.

    Article  PubMed  CAS  Google Scholar 

  140. Lhomme, C., et al. (2008). Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. Journal of Clinical Oncology, 26, 2674–2682.

    Article  PubMed  CAS  Google Scholar 

  141. Friedenberg, W. R., et al. (2006). Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): A trial of the Eastern Cooperative Oncology Group. Cancer, 106, 830–838.

    Article  PubMed  CAS  Google Scholar 

  142. Greenberg, P. L., et al. (2004). Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: A phase III trial (E2995). Journal of Clinical Oncology, 22, 1078–1086.

    Article  PubMed  CAS  Google Scholar 

  143. Khdair, A., et al. (2010). Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 141, 137–144.

    Article  PubMed  CAS  Google Scholar 

  144. Huang, I. P., et al. (2011). Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Molecular Cancer Therapeutics, 10, 761–769.

    Article  PubMed  CAS  Google Scholar 

  145. Chen, B., et al. (2009). Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice. International Journal of Nanomedicine, 4, 73–78.

    Article  PubMed  CAS  Google Scholar 

  146. Chen, B. A., et al. (2009). Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo. International Journal of Nanomedicine, 4, 201–208.

    Article  PubMed  CAS  Google Scholar 

  147. Ganta, S., Devalapally, H., & Amiji, M. (2010). Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. Journal of Pharmaceutical Sciences, 99, 4630–4641.

    Article  PubMed  CAS  Google Scholar 

  148. Wang, X., et al. (2011). A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano, 5, 6184–6194.

    Article  PubMed  CAS  Google Scholar 

  149. Wang, X., et al. (2009). HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano, 3, 3165–3174.

    Article  PubMed  CAS  Google Scholar 

  150. Dong, X., et al. (2009). Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Research, 69, 3918–3926.

    Article  PubMed  CAS  Google Scholar 

  151. Patil, Y., Sadhukha, T., Ma, L., & Panyam, J. (2009). Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Journal of Controlled Release, 136, 21–29.

    Article  PubMed  CAS  Google Scholar 

  152. Patil, Y. B., Swaminathan, S. K., Sadhukha, T., Ma, L., & Panyam, J. (2010). The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials, 31, 358–365.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Krupa Patel and Carol M. Lee for insightful discussion. We are grateful to several past trainees in our laboratory for contributing to the development of some ideas presented in this review. Work in our laboratory was supported by grants from the Canadian Institutes of Health Research (209710 to I.F.T.) and the Susan G. Komen Foundation. A.O. and I.F.T. receive research funding from Sanofi Aventis. We apologize to all colleagues whose work could not be properly cited due to space restrictions.

Conflict of interest

The authors claim that there are no conflicts of interest in relation with this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Tannock.

Additional information

Summary

• ATP-binding cassette (ABC) transporters, including P-glycoprotein, multidrug resistance-associated protein 1, and breast cancer resistance protein, cause active efflux of anticancer agents out of tumor cells and confer multidrug resistance (MDR).

• ABC transporters are expressed in a broad range of human solid tumors and hematologic malignancies. Expression of these drug transporters is associated with resistance to chemotherapy in preclinical models, as well as poor response and prognosis in patients treated with chemotherapy.

• Three generations of inhibitors of ABC transporters have been developed to sensitize multidrug-resistant tumor cells. Several problems, including unacceptable cytotoxic effects, altered pharmacokinetics of anticancer drugs, lack of preselection of patients, and adversely modified drug distribution, have prevented their successful translation to the clinic.

• There has been inadequate preclinical evaluation of most MDR inhibitors, with testing most often undertaken in animals using tumors that were either not established or large enough to be representative of human cancer.

• Alternative strategies to direct the inhibition of the activity of ABC efflux pumps have been developed, such as RNA interference and nanoparticles to avert or overcome ABC transporter-mediated MDR; they have demonstrated encouraging results in preclinical studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Ocana, A. & Tannock, I.F. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit?. Cancer Metastasis Rev 32, 211–227 (2013). https://doi.org/10.1007/s10555-012-9402-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9402-8

Keywords

Navigation