Skip to main content

Advertisement

Log in

Polyunsaturated fatty acid metabolism in prostate cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calviello, G., Serini, S., & Piccioni, E. (2007). n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Current Medicinal Chemistry, 14(29), 3059–3069.

    PubMed  CAS  Google Scholar 

  2. Sun, H., Berquin, I. M., Owens, R. T., O’Flaherty, J. T., & Edwards, I. J. (2008). Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Research, 68(8), 2912–2919.

    PubMed  CAS  Google Scholar 

  3. Berquin, I. M., Min, Y., Wu, R., et al. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. The Journal of Clinical Investigation, 117(7), 1866–1875.

    PubMed  CAS  Google Scholar 

  4. Berquin, I. M., Edwards, I. J., & Chen, Y. Q. (2008). Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Letters, 269(2), 363–377.

    PubMed  CAS  Google Scholar 

  5. Chen, Y. Q., Edwards, I. J., Kridel, S. J., Thornburg, T., & Berquin, I. M. (2007). Dietary fat–gene interactions in cancer. Cancer Metastasis Reviews, 26(3–4), 535–551.

    PubMed  CAS  Google Scholar 

  6. Simopoulos, A. P. (2010). Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Experimental Biology and Medicine, 235(7), 785–795.

    PubMed  CAS  Google Scholar 

  7. Bernert, J. T., Jr., & Sprecher, H. (1975). Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition of rat liver lipids. Biochimica et Biophysica Acta, 398(3), 354–363.

    PubMed  Google Scholar 

  8. Burdge, G. C., & Calder, P. C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development, 45(5), 581–597.

    CAS  Google Scholar 

  9. Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50.

    PubMed  CAS  Google Scholar 

  10. Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N., Jr. (2001). Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42(8), 1257–1265.

    PubMed  CAS  Google Scholar 

  11. Portolesi, R., Powell, B. C., & Gibson, R. A. (2007). Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. Journal of Lipid Research, 48(7), 1592–1598.

    PubMed  CAS  Google Scholar 

  12. Childs, C. E., Romeu-Nadal, M., Burdge, G. C., & Calder, P. C. (2008). Gender differences in the n-3 fatty acid content of tissues. Proceedings of the Nutrition Society, 67(1), 19–27.

    PubMed  CAS  Google Scholar 

  13. Kitson, A. P., Stroud, C. K., & Stark, K. D. (2010). Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids, 45(3), 209–224.

    PubMed  CAS  Google Scholar 

  14. Bar, M., Wyman, S. K., Fritz, B. R., et al. (2008). MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells, 26(10), 2496–2505.

    PubMed  CAS  Google Scholar 

  15. Nygaard, S., Jacobsen, A., Lindow, M., et al. (2009). Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing. BMC Medical Genomics, 2, 35.

    PubMed  Google Scholar 

  16. Creighton, C. J., Benham, A. L., Zhu, H., et al. (2010). Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One, 5(3), e9637.

    PubMed  Google Scholar 

  17. Schaeffer, L., Gohlke, H., Muller, M., et al. (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 15(11), 1745–1756.

    PubMed  CAS  Google Scholar 

  18. Xie, L., & Innis, S. M. (2008). Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. Journal of Nutrition, 138(11), 2222–2228.

    PubMed  CAS  Google Scholar 

  19. Martinelli, N., Girelli, D., Malerba, G., et al. (2008). FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. American Journal of Clinical Nutrition, 88(4), 941–949.

    PubMed  CAS  Google Scholar 

  20. Malerba, G., Schaeffer, L., Xumerle, L., et al. (2008). SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids, 43(4), 289–299.

    PubMed  CAS  Google Scholar 

  21. Rzehak, P., Heinrich, J., Klopp, N., et al. (2009). Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. British Journal of Nutrition, 101(1), 20–26.

    PubMed  CAS  Google Scholar 

  22. Bokor, S., Dumont, J., Spinneker, A., et al. (2010). Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. Journal of Lipid Research, 51(8), 2325–2333.

    PubMed  CAS  Google Scholar 

  23. Lu, Y., Feskens, E. J., Dolle, M. E., et al. (2010). Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. American Journal of Clinical Nutrition, 92(1), 258–265.

    PubMed  CAS  Google Scholar 

  24. Mathias, R. A., Vergara, C., Gao, L., et al. (2010). FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. Journal of Lipid Research, 51(9), 2766–2774.

    PubMed  CAS  Google Scholar 

  25. Molto-Puigmarti, C., Plat, J., Mensink, R. P., et al. (2010). FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. American Journal of Clinical Nutrition, 91(5), 1368–1376.

    PubMed  CAS  Google Scholar 

  26. Zietemann, V., Kroger, J., Enzenbach, C., et al. (2010). Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. British Journal of Nutrition, 104(12), 1748–1759.

    PubMed  CAS  Google Scholar 

  27. Koletzko, B., Lattka, E., Zeilinger, S., Illig, T., & Steer, C. (2011). Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. American Journal of Clinical Nutrition, 93(1), 211–219.

    PubMed  CAS  Google Scholar 

  28. Kwak, J. H., Paik, J. K., Kim, O. Y., et al. (2011). FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis, 214(1), 94–100.

    PubMed  CAS  Google Scholar 

  29. Tanaka, T., Shen, J., Abecasis, G. R., et al. (2009). Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genetics, 5(1), e1000338.

    PubMed  Google Scholar 

  30. Lattka, E., Illig, T., Heinrich, J., & Koletzko, B. (2009). FADS gene cluster polymorphisms: important modulators of fatty acid levels and their impact on atopic diseases. Journal of Nutrigenetics and Nutrigenomics, 2(3), 119–128.

    PubMed  CAS  Google Scholar 

  31. Lattka, E., Illig, T., Heinrich, J., & Koletzko, B. (2010). Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clinical Nutrition, 29(3), 277–287.

    PubMed  CAS  Google Scholar 

  32. Martinelli, N., Consoli, L., & Olivieri, O. (2009). A ‘desaturase hypothesis’ for atherosclerosis: Janus-faced enzymes in omega-6 and omega-3 polyunsaturated fatty acid metabolism. Journal of Nutrigenetics and Nutrigenomics, 2(3), 129–139.

    PubMed  CAS  Google Scholar 

  33. Lattka, E., Illig, T., Koletzko, B., & Heinrich, J. (2010). Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Current Opinion in Lipidology, 21(1), 64–69.

    PubMed  CAS  Google Scholar 

  34. Merino, D. M., Ma, D. W., & Mutch, D. M. (2010). Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids in Health and Disease, 9, 63.

    PubMed  Google Scholar 

  35. Merino, D. M., Johnston, H., Clarke, S., et al. (2011). Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Molecular Genetics and Metabolism, 103(2), 171–178.

    PubMed  CAS  Google Scholar 

  36. Kuhajda, F. P. (2006). Fatty acid synthase and cancer: new application of an old pathway. Cancer Research, 66(12), 5977–5980.

    PubMed  CAS  Google Scholar 

  37. Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews. Cancer, 7(10), 763–777.

    PubMed  CAS  Google Scholar 

  38. Bandyopadhyay, S., Pai, S. K., Watabe, M., et al. (2005). FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene, 24(34), 5389–5395.

    PubMed  CAS  Google Scholar 

  39. Milgraum, L. Z., Witters, L. A., Pasternack, G. R., & Kuhajda, F. P. (1997). Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clinical Cancer Research, 3(11), 2115–2120.

    PubMed  CAS  Google Scholar 

  40. Pflug, B. R., Pecher, S. M., Brink, A. W., Nelson, J. B., & Foster, B. A. (2003). Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate, 57(3), 245–254.

    PubMed  CAS  Google Scholar 

  41. Rossi, S., Graner, E., Febbo, P., et al. (2003). Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Molecular Cancer Research, 1(10), 707–715.

    PubMed  CAS  Google Scholar 

  42. Shah, U. S., Dhir, R., Gollin, S. M., et al. (2006). Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Human Pathology, 37(4), 401–409.

    PubMed  CAS  Google Scholar 

  43. Kridel, S. J., Lowther, W. T., & Pemble, C. Wt. (2007). Fatty acid synthase inhibitors: new directions for oncology. Expert Opin Investig Drugs, 16(11), 1817–1829.

    PubMed  CAS  Google Scholar 

  44. Swinnen, J. V., Esquenet, M., Goossens, K., Heyns, W., & Verhoeven, G. (1997). Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Research, 57(6), 1086–1090.

    PubMed  CAS  Google Scholar 

  45. Swinnen, J. V., Ulrix, W., Heyns, W., & Verhoeven, G. (1997). Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 12975–12980.

    PubMed  CAS  Google Scholar 

  46. Swinnen, J. V., & Verhoeven, G. (1998). Androgens and the control of lipid metabolism in human prostate cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 65(1–6), 191–198.

    PubMed  CAS  Google Scholar 

  47. Swinnen, J. V., Roskams, T., Joniau, S., et al. (2002). Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. International Journal of Cancer, 98(1), 19–22.

    CAS  Google Scholar 

  48. Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2002). Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Research, 62(3), 642–646.

    PubMed  Google Scholar 

  49. Migita, T., Ruiz, S., Fornari, A., et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. Journal of the National Cancer Institute, 101(7), 519–532.

    PubMed  CAS  Google Scholar 

  50. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C., & Thompson, C. B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24(41), 6314–6322.

    PubMed  CAS  Google Scholar 

  51. Hatzivassiliou, G., Zhao, F., Bauer, D. E., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.

    PubMed  CAS  Google Scholar 

  52. DeBerardinis, R. J., Mancuso, A., Daikhin, E., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences, 104(49), 19345–19350.

    CAS  Google Scholar 

  53. Abu-Elheiga, L., Matzuk, M. M., Kordari, P., et al. (2005). Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. PNAS, 102(34), 12011–12016.

    PubMed  CAS  Google Scholar 

  54. Mao, J., DeMayo, F. J., Li, H., et al. (2006). Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8552–8557.

    PubMed  CAS  Google Scholar 

  55. Chirala, S. S., Chang, H., Matzuk, M., et al. (2003). Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6358–6363.

    PubMed  CAS  Google Scholar 

  56. Wakil, S. J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28(11), 4523–4530.

    PubMed  CAS  Google Scholar 

  57. Wakil, S. J., Stoops, J. K., & Joshi, V. C. (1983). Fatty acid synthesis and its regulation. Annual Review of Biochemistry, 52(1), 537–579.

    PubMed  CAS  Google Scholar 

  58. Smith, S. (1994). The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. The FASEB Journal, 8(15), 1248–1259.

    PubMed  CAS  Google Scholar 

  59. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., & Joulin, V. (2006). Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Research, 66(10), 5287–5294.

    PubMed  CAS  Google Scholar 

  60. Knowles, L. M., Axelrod, F., Browne, C. D., & Smith, J. W. (2004). A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. Journal of Biological Chemistry, 279(29), 30540–30545.

    PubMed  CAS  Google Scholar 

  61. Little, J. L., Wheeler, F. B., Fels, D. R., Koumenis, C., & Kridel, S. J. (2007). Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Research, 67(3), 1262–1269.

    PubMed  CAS  Google Scholar 

  62. Heiligtag, S. J., Bredehorst, R., & David, K. A. (2002). Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death and Differentiation, 9(9), 1017–1025.

    PubMed  CAS  Google Scholar 

  63. Fiorentino, M., Zadra, G., Palescandolo, E., et al. (2008). Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Laboratory Investigation, 88(12), 1340–1348.

    PubMed  CAS  Google Scholar 

  64. Migita, T., Narita, T., Nomura, K., et al. (2008). ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Research, 68(20), 8547–8554.

    PubMed  CAS  Google Scholar 

  65. Brusselmans, K., De Schrijver, E., Verhoeven, G., & Swinnen, J. V. (2005). RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Research, 65(15), 6719–6725.

    PubMed  CAS  Google Scholar 

  66. Kridel, S. J., Axelrod, F., Rozenkrantz, N., & Smith, J. W. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64(6), 2070–2075.

    PubMed  CAS  Google Scholar 

  67. Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M., & Kuhajda, F. P. (2005). Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene, 24(1), 39–46.

    PubMed  CAS  Google Scholar 

  68. Kuhajda, F. P., Jenner, K., Wood, F. D., et al. (1994). Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6379–6383.

    PubMed  CAS  Google Scholar 

  69. Orita, H., Coulter, J., Tully, E., Kuhajda, F. P., & Gabrielson, E. (2008). Inhibiting fatty acid synthase for chemoprevention of chemically induced lung tumors. Clinical Cancer Research, 14(8), 2458–2464.

    PubMed  CAS  Google Scholar 

  70. Swinnen, J. V., Van Veldhoven, P. P., Timmermans, L., et al. (2003). Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochemical and Biophysical Research Communications, 302(4), 898–903.

    PubMed  CAS  Google Scholar 

  71. Rysman, E., Brusselmans, K., Scheys, K., et al. (2010). De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research, 70(20), 8117–8126.

    PubMed  CAS  Google Scholar 

  72. Chakravarthy, M. V., Pan, Z., Zhu, Y., et al. (2005). “New” hepatic fat activates PPAR[alpha] to maintain glucose, lipid, and cholesterol homeostasis. Cell Metabolism, 1(5), 309–322.

    PubMed  CAS  Google Scholar 

  73. Chakravarthy, M. V., Lodhi, I. J., Yin, L., et al. (2009). Identification of a physiologically relevant endogenous ligand for PPAR[alpha] in liver. Cell, 138(3), 476–488.

    PubMed  CAS  Google Scholar 

  74. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2003). RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Research, 63(13), 3799–3804.

    PubMed  Google Scholar 

  75. Kuemmerle, N. B., Rysman, E., Lombardo, P. S., et al. (2011). Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Molecular Cancer Therapeutics, 10(3), 427–436.

    PubMed  CAS  Google Scholar 

  76. Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition, 70(3 Suppl), 560S–569S.

    PubMed  CAS  Google Scholar 

  77. Crawford, M. A., Casperd, N. M., & Sinclair, A. J. (1976). The long chain metabolites of linoleic avid linolenic acids in liver and brain in herbivores and carnivores. Comparative Biochemistry and Physiology. B, 54(3), 395–401.

    CAS  Google Scholar 

  78. Horrobin, D. F., Huang, Y. S., Cunnane, S. C., & Manku, M. S. (1984). Essential fatty acids in plasma, red blood cells and liver phospholipids in common laboratory animals as compared to humans. Lipids, 19(10), 806–811.

    PubMed  CAS  Google Scholar 

  79. Fu, Z., & Sinclair, A. J. (2000). Increased alpha-linolenic acid intake increases tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids, 35(4), 395–400.

    PubMed  CAS  Google Scholar 

  80. Leyton, J., Drury, P. J., & Crawford, M. A. (1987). Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. British Journal of Nutrition, 57(3), 383–393.

    PubMed  CAS  Google Scholar 

  81. DeLany, J. P., Windhauser, M. M., Champagne, C. M., & Bray, G. A. (2000). Differential oxidation of individual dietary fatty acids in humans. American Journal of Clinical Nutrition, 72(4), 905–911.

    PubMed  CAS  Google Scholar 

  82. Gavino, V. C., Cordeau, S., & Gavino, G. (2003). Kinetic analysis of the selectivity of acylcarnitine synthesis in rat mitochondria. Lipids, 38(4), 485–490.

    PubMed  CAS  Google Scholar 

  83. Bryan, D. L., Hart, P., Forsyth, K., & Gibson, R. (2001). Incorporation of alpha-linolenic acid and linoleic acid into human respiratory epithelial cell lines. Lipids, 36(7), 713–717.

    PubMed  CAS  Google Scholar 

  84. Martin-Chouly, C. A., Menier, V., Hichami, A., et al. (2000). Modulation of PAF production by incorporation of arachidonic acid and eicosapentaenoic acid in phospholipids of human leukemic monocyte-like cells THP-1. Prostaglandins & Other Lipid Mediators, 60(4–6), 127–135.

    CAS  Google Scholar 

  85. Pickett, W. C., & Ramesha, C. S. (1987). Ether phospholipids in control and 20:4-depleted rat PMN: additional evidence for a 1-O-alkyl-2-20:4-sn-glycerol-3-phosphocholine specific phospholipase A2. Agents and Actions, 21(3–4), 390–392.

    PubMed  CAS  Google Scholar 

  86. Strokin, M., Sergeeva, M., & Reiser, G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. British Journal of Pharmacology, 139(5), 1014–1022.

    PubMed  CAS  Google Scholar 

  87. Nakanishi, M., & Rosenberg, D. W. (2006). Roles of cPLA2alpha and arachidonic acid in cancer. Biochimica et Biophysica Acta, 1761(11), 1335–1343.

    PubMed  CAS  Google Scholar 

  88. Murakami, M., Taketomi, Y., Girard, C., Yamamoto, K., & Lambeau, G. (2010). Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice. Biochimie, 92(6), 561–582.

    PubMed  CAS  Google Scholar 

  89. Scott, K. F., Sajinovic, M., Hein, J., et al. (2010). Emerging roles for phospholipase A2 enzymes in cancer. Biochimie, 92(6), 601–610.

    PubMed  CAS  Google Scholar 

  90. Dong, Q., Patel, M., Scott, K. F., Graham, G. G., Russell, P. J., & Sved, P. (2006). Oncogenic action of phospholipase A2 in prostate cancer. Cancer Letters, 240(1), 9–16.

    PubMed  CAS  Google Scholar 

  91. Mirtti, T., Laine, V. J., Hiekkanen, H., et al. (2009). Group IIA phospholipase A as a prognostic marker in prostate cancer: relevance to clinicopathological variables and disease-specific mortality. APMIS, 117(3), 151–161.

    PubMed  CAS  Google Scholar 

  92. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10(3), 181–193.

    PubMed  CAS  Google Scholar 

  93. Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Reviews, 29(4), 723–735.

    PubMed  CAS  Google Scholar 

  94. Chapkin, R. S., Kim, W., Lupton, J. R., & McMurray, D. N. (2009). Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(2–3), 187–191.

    PubMed  CAS  Google Scholar 

  95. Dubois, R. N., Abramson, S. B., Crofford, L., et al. (1998). Cyclooxygenase in biology and disease. The FASEB Journal, 12(12), 1063–1073.

    PubMed  CAS  Google Scholar 

  96. Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., & Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol, 2010, 215158.

    PubMed  Google Scholar 

  97. Wang, M. T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Reviews, 26(3–4), 525–534.

    PubMed  CAS  Google Scholar 

  98. Reese, A. C., Fradet, V., & Witte, J. S. (2009). Omega-3 fatty acids, genetic variants in COX-2 and prostate cancer. Journal of Nutrigenetics and Nutrigenomics, 2(3), 149–158.

    PubMed  CAS  Google Scholar 

  99. Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.

    PubMed  CAS  Google Scholar 

  100. Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679–23682.

    PubMed  CAS  Google Scholar 

  101. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26(3–4), 503–524.

    PubMed  CAS  Google Scholar 

  102. Avis, I. M., Jett, M., Boyle, T., et al. (1996). Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. The Journal of Clinical Investigation, 97(3), 806–813.

    PubMed  CAS  Google Scholar 

  103. Soumaoro, L. T., Iida, S., Uetake, H., et al. (2006). Expression of 5-lipoxygenase in human colorectal cancer. World Journal of Gastroenterology, 12(39), 6355–6360.

    PubMed  CAS  Google Scholar 

  104. Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834.

    PubMed  CAS  Google Scholar 

  105. Faronato, M., Muzzonigro, G., Milanese, G., et al. (2007). Increased expression of 5-lipoxygenase is common in clear cell renal cell carcinoma. Histology and Histopathology, 22(10), 1109–1118.

    PubMed  CAS  Google Scholar 

  106. Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13(8), 1086–1091.

    PubMed  CAS  Google Scholar 

  107. Ghosh, J. (2003). Inhibition of arachidonate 5-lipoxygenase triggers prostate cancer cell death through rapid activation of c-Jun N-terminal kinase. Biochemical and Biophysical Research Communications, 307(2), 342–349.

    PubMed  CAS  Google Scholar 

  108. Ghosh, J., & Myers, C. E. (1998). Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13182–13187.

    PubMed  CAS  Google Scholar 

  109. Sharma, B. K., Pilania, P., & Singh, P. (2009). Modeling of cyclooxygenase-2 and 5-lipooxygenase inhibitory activity of apoptosis-inducing agents potentially useful in prostate cancer chemotherapy: derivatives of diarylpyrazole. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 607–615.

    PubMed  CAS  Google Scholar 

  110. Sundaram, S., & Ghosh, J. (2006). Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochemical and Biophysical Research Communications, 339(1), 93–98.

    PubMed  CAS  Google Scholar 

  111. Koh, W. P., Yuan, J. M., van den Berg, D., Lee, H. P., & Yu, M. C. (2004). Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: the Singapore Chinese Health Study. British Journal of Cancer, 90(9), 1760–1764.

    PubMed  CAS  Google Scholar 

  112. Siezen, C. L., van Leeuwen, A. I., Kram, N. R., Luken, M. E., van Kranen, H. J., & Kampman, E. (2005). Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption. Carcinogenesis, 26(2), 449–457.

    PubMed  CAS  Google Scholar 

  113. Hedelin, M., Chang, E. T., Wiklund, F., et al. (2007). Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. International Journal of Cancer, 120(2), 398–405.

    CAS  Google Scholar 

  114. Fradet, V., Cheng, I., Casey, G., & Witte, J. S. (2009). Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clinical Cancer Research, 15(7), 2559–2566.

    PubMed  CAS  Google Scholar 

  115. Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. American Journal of Clinical Nutrition, 79(6), 935–945.

    PubMed  CAS  Google Scholar 

  116. Haeggstrom, J. Z., Rinaldo-Matthis, A., Wheelock, C. E., & Wetterholm, A. (2010). Advances in eicosanoid research, novel therapeutic implications. Biochemical and Biophysical Research Communications, 396(1), 135–139.

    PubMed  Google Scholar 

  117. Radmark, O., & Samuelsson, B. (2010). Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. Journal of Internal Medicine, 268(1), 5–14.

    PubMed  CAS  Google Scholar 

  118. Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. Journal of Biological Chemistry, 275(42), 32775–32782.

    PubMed  CAS  Google Scholar 

  119. Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240.

    PubMed  CAS  Google Scholar 

  120. Lovgren, A. K., Kovarova, M., & Koller, B. H. (2007). cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Molecular and Cellular Biology, 27(12), 4416–4430.

    PubMed  CAS  Google Scholar 

  121. Hanaka, H., Pawelzik, S. C., Johnsen, J. I., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106(44), 18757–18762.

    PubMed  CAS  Google Scholar 

  122. Amirian, E. S., Ittmann, M. M., & Scheurer, M. E. (2011). Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate, 71(13), 1382–1389.

    PubMed  CAS  Google Scholar 

  123. Cathcart, M. C., Reynolds, J. V., O’Byrne, K. J., & Pidgeon, G. P. (2010). The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer. Biochimica et Biophysica Acta, 1805(2), 153–166.

    PubMed  CAS  Google Scholar 

  124. Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24(49), 7320–7326.

    PubMed  CAS  Google Scholar 

  125. Poole, E. M., Bigler, J., Whitton, J., Sibert, J. G., Potter, J. D., & Ulrich, C. M. (2006). Prostacyclin synthase and arachidonate 5-lipoxygenase polymorphisms and risk of colorectal polyps. Cancer Epidemiology, Biomarkers & Prevention, 15(3), 502–508.

    CAS  Google Scholar 

  126. Ermert, L., Dierkes, C., & Ermert, M. (2003). Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clinical Cancer Research, 9(5), 1604–1610.

    PubMed  CAS  Google Scholar 

  127. Nana-Sinkam, P., Golpon, H., Keith, R. L., et al. (2004). Prostacyclin in human non-small cell lung cancers. Chest, 125(5 Suppl), 141S.

    PubMed  Google Scholar 

  128. Niknami, M., Vignarajan, S., Yao, M., et al. (2010). Decrease in expression or activity of cytosolic phospholipase A2alpha increases cyclooxygenase-1 action: a cross-talk between key enzymes in arachidonic acid pathway in prostate cancer cells. Biochimica et Biophysica Acta, 1801(7), 731–737.

    PubMed  CAS  Google Scholar 

  129. Nie, D., Che, M., Zacharek, A., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. American Journal of Pathology, 164(2), 429–439.

    PubMed  CAS  Google Scholar 

  130. Narumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiological Reviews, 79(4), 1193–1226.

    PubMed  CAS  Google Scholar 

  131. Chen, Y., & Hughes-Fulford, M. (2000). Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. British Journal of Cancer, 82(12), 2000–2006.

    PubMed  CAS  Google Scholar 

  132. Wang, X., & Klein, R. D. (2007). Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Molecular Carcinogenesis, 46(11), 912–923.

    PubMed  CAS  Google Scholar 

  133. Dassesse, T., de Leval, X., de Leval, L., Pirotte, B., Castronovo, V., & Waltregny, D. (2006). Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol, 50(5), 1021–1031. discussion 31.

    PubMed  CAS  Google Scholar 

  134. Nie, D., Guo, Y., Yang, D., et al. (2008). Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase rho. Cancer Research, 68(1), 115–121.

    PubMed  CAS  Google Scholar 

  135. Mahmud, S., Franco, E., & Aprikian, A. (2004). Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. British Journal of Cancer, 90(1), 93–99.

    PubMed  CAS  Google Scholar 

  136. Platz, E. A., Rohrmann, S., Pearson, J. D., et al. (2005). Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiology, Biomarkers & Prevention, 14(2), 390–396.

    CAS  Google Scholar 

  137. Chan, J. M., Feraco, A., Shuman, M., & Hernandez-Diaz, S. (2006). The epidemiology of prostate cancer—with a focus on nonsteroidal anti-inflammatory drugs. Hematology/Oncology Clinics of North America, 20(4), 797–809.

    PubMed  Google Scholar 

  138. Salinas, C. A., Kwon, E. M., FitzGerald, L. M., et al. (2010). Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. American Journal of Epidemiology, 172(5), 578–590.

    PubMed  Google Scholar 

  139. Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788.

    PubMed  CAS  Google Scholar 

  140. Chapkin, R. S., Seo, J., McMurray, D. N., & Lupton, J. R. (2008). Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chemistry and Physics of Lipids, 153(1), 14–23.

    PubMed  CAS  Google Scholar 

  141. Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280–289.

    PubMed  Google Scholar 

  142. Wang, D., & DuBois, R. N. (2008). Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Letters, 267(2), 197–203.

    PubMed  CAS  Google Scholar 

  143. Wymann, M. P., & Schneiter, R. (2008). Lipid signalling in disease. Nature Reviews Molecular Cell Biology, 9(2), 162–176.

    PubMed  CAS  Google Scholar 

  144. Folkman, J., Cole, P., & Zimmerman, S. (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Annals of Surgery, 164(3), 491–502.

    PubMed  CAS  Google Scholar 

  145. Gimbrone, M. A., Jr., Leapman, S. B., Cotran, R. S., & Folkman, J. (1972). Tumor dormancy in vivo by prevention of neovascularization. The Journal of Experimental Medicine, 136(2), 261–276.

    PubMed  Google Scholar 

  146. Borre, M., Offersen, B. V., Nerstrom, B., & Overgaard, J. (1998). Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. British Journal of Cancer, 78(7), 940–944.

    PubMed  CAS  Google Scholar 

  147. Bono, A. V., Celato, N., Cova, V., Salvadore, M., Chinetti, S., & Novario, R. (2002). Microvessel density in prostate carcinoma. Prostate Cancer and Prostatic Diseases, 5(2), 123–127.

    PubMed  CAS  Google Scholar 

  148. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews, 25(4), 581–611.

    PubMed  CAS  Google Scholar 

  149. Tsuzuki, T., Shibata, A., Kawakami, Y., Nakagawa, K., & Miyazawa, T. (2007). Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. Journal of Nutrition, 137(3), 641–646.

    PubMed  CAS  Google Scholar 

  150. Tsuji, M., Murota, S. I., & Morita, I. (2003). Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(5), 337–342.

    PubMed  CAS  Google Scholar 

  151. Yang, S. P., Morita, I., & Murota, S. I. (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. Journal of Cellular Physiology, 176(2), 342–349.

    PubMed  CAS  Google Scholar 

  152. Calviello, G., Di Nicuolo, F., Gragnoli, S., et al. (2004). n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis, 25(12), 2303–2310.

    PubMed  CAS  Google Scholar 

  153. Connor, K. M., SanGiovanni, J. P., Lofqvist, C., et al. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine, 13(7), 868–873.

    PubMed  CAS  Google Scholar 

  154. Stahl, A., Sapieha, P., Connor, K. M., et al. (2010). Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circulation Research, 107(4), 495–500.

    PubMed  CAS  Google Scholar 

  155. Sapieha, P., Stahl, A., Chen, J., et al. (2011). 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of {omega}-3 polyunsaturated fatty acids. Science Translational Medicine, 3(69), 69ra12.

    PubMed  Google Scholar 

  156. Rose, D. P., & Connolly, J. M. (1999). Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. International Journal of Oncology, 15(5), 1011–1015.

    PubMed  CAS  Google Scholar 

  157. Ambring, A., Johansson, M., Axelsen, M., Gan, L., Strandvik, B., & Friberg, P. (2006). Mediterranean-inspired diet lowers the ratio of serum phospholipid n-6 to n-3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor in healthy subjects. American Journal of Clinical Nutrition, 83(3), 575–581.

    PubMed  CAS  Google Scholar 

  158. Fox, P. L., & DiCorleto, P. E. (1988). Fish oils inhibit endothelial cell production of platelet-derived growth factor-like protein. Science, 241(4864), 453–456.

    PubMed  CAS  Google Scholar 

  159. Kaminski, W. E., Jendraschak, E., Kiefl, R., & von Schacky, C. (1993). Dietary omega-3 fatty acids lower levels of platelet-derived growth factor mRNA in human mononuclear cells. Blood, 81(7), 1871–1879.

    PubMed  CAS  Google Scholar 

  160. Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7(3), 165–197.

    PubMed  CAS  Google Scholar 

  161. Ornitz, D. M., & Itoh, N. (2001). Fibroblast growth factors. Genome Biology, 2(3), REVIEWS3005.

    PubMed  CAS  Google Scholar 

  162. Kwabi-Addo, B., Ozen, M., & Ittmann, M. (2004). The role of fibroblast growth factors and their receptors in prostate cancer. Endocrine-Related Cancer, 11(4), 709–724.

    PubMed  CAS  Google Scholar 

  163. Li, Z. G., Mathew, P., Yang, J., et al. (2008). Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. The Journal of Clinical Investigation, 118(8), 2697–2710.

    PubMed  CAS  Google Scholar 

  164. Heer, R., Douglas, D., Mathers, M. E., Robson, C. N., & Leung, H. Y. (2004). Fibroblast growth factor 17 is over-expressed in human prostate cancer. The Journal of Pathology, 204(5), 578–586.

    PubMed  CAS  Google Scholar 

  165. Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267(16), 10931–10934.

    PubMed  CAS  Google Scholar 

  166. Dorkin, T. J., Robinson, M. C., Marsh, C., Neal, D. E., & Leung, H. Y. (1999). aFGF immunoreactivity in prostate cancer and its co-localization with bFGF and FGF8. The Journal of Pathology, 189(4), 564–569.

    PubMed  CAS  Google Scholar 

  167. Polnaszek, N., Kwabi-Addo, B., Peterson, L. E., et al. (2003). Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Research, 63(18), 5754–5760.

    PubMed  CAS  Google Scholar 

  168. Gnanapragasam, V. J., Robinson, M. C., Marsh, C., Robson, C. N., Hamdy, F. C., & Leung, H. Y. (2003). FGF8 isoform b expression in human prostate cancer. British Journal of Cancer, 88(9), 1432–1438.

    PubMed  CAS  Google Scholar 

  169. Valta, M. P., Tuomela, J., Vuorikoski, H., et al. (2009). FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. Journal of Cellular Biochemistry, 107(4), 769–784.

    PubMed  CAS  Google Scholar 

  170. Elo, T. D., Valve, E. M., Seppanen, J. A., et al. (2010). Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice. Neoplasia, 12(11), 915–927.

    PubMed  CAS  Google Scholar 

  171. Kasayama, S., Koga, M., Kouhara, H., et al. (1994). Unsaturated fatty acids are required for continuous proliferation of transformed androgen-dependent cells by fibroblast growth factor family proteins. Cancer Research, 54(24), 6441–6445.

    PubMed  CAS  Google Scholar 

  172. Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987–995.

    PubMed  CAS  Google Scholar 

  173. Huang, B., Zhao, J., Li, H., et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65(12), 5009–5014.

    PubMed  CAS  Google Scholar 

  174. Kelly, M. G., Alvero, A. B., Chen, R., et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research, 66(7), 3859–3868.

    PubMed  CAS  Google Scholar 

  175. Rakoff-Nahoum, S., & Medzhitov, R. (2009). Toll-like receptors and cancer. Nature Reviews Cancer, 9(1), 57–63.

    PubMed  CAS  Google Scholar 

  176. Zheng, S. L., Augustsson-Balter, K., Chang, B., et al. (2004). Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Research, 64(8), 2918–2922.

    PubMed  CAS  Google Scholar 

  177. Sun, J., Wiklund, F., Zheng, S. L., et al. (2005). Sequence variants in toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. Journal of the National Cancer Institute, 97(7), 525–532.

    PubMed  CAS  Google Scholar 

  178. Lee, J. Y., Plakidas, A., Lee, W. H., et al. (2003). Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. Journal of Lipid Research, 44(3), 479–486.

    PubMed  CAS  Google Scholar 

  179. Lee, J. Y., Zhao, L., Youn, H. S., et al. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. Journal of Biological Chemistry, 279(17), 16971–16979.

    PubMed  CAS  Google Scholar 

  180. Paone, A., Galli, R., Gabellini, C., et al. (2010). Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia, 12(7), 539–549.

    PubMed  CAS  Google Scholar 

  181. Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., & Bernfield, M. (1985). The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. Journal of Biological Chemistry, 260(20), 11046–11052.

    PubMed  CAS  Google Scholar 

  182. Manon-Jensen, T., Itoh, Y., & Couchman, J. R. (2010). Proteoglycans in health and disease: the multiple roles of syndecan shedding. The FEBS Journal, 277(19), 3876–3889.

    PubMed  CAS  Google Scholar 

  183. Inki, P., & Jalkanen, M. (1996). The role of syndecan-1 in malignancies. Annali Medici, 28(1), 63–67.

    CAS  Google Scholar 

  184. Matsumoto, A., Ono, M., Fujimoto, Y., Gallo, R. L., Bernfield, M., & Kohgo, Y. (1997). Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. International Journal of Cancer, 74(5), 482–491.

    CAS  Google Scholar 

  185. Kumar-Singh, S., Jacobs, W., Dhaene, K., et al. (1998). Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. The Journal of Pathology, 186(3), 300–305.

    PubMed  CAS  Google Scholar 

  186. Loussouarn, D., Campion, L., Sagan, C., et al. (2008). Prognostic impact of syndecan-1 expression in invasive ductal breast carcinomas. British Journal of Cancer, 98(12), 1993–1998.

    PubMed  CAS  Google Scholar 

  187. Barbareschi, M., Maisonneuve, P., Aldovini, D., et al. (2003). High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer, 98(3), 474–483.

    PubMed  Google Scholar 

  188. Davies, E. J., Blackhall, F. H., Shanks, J. H., et al. (2004). Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clinical Cancer Research, 10(15), 5178–5186.

    PubMed  CAS  Google Scholar 

  189. Choi, D. S., Kim, J. H., Ryu, H. S., et al. (2007). Syndecan-1, a key regulator of cell viability in endometrial cancer. International Journal of Cancer, 121(4), 741–750.

    CAS  Google Scholar 

  190. Stanley, M. J., Stanley, M. W., Sanderson, R. D., & Zera, R. (1999). Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. American Journal of Clinical Pathology, 112(3), 377–383.

    PubMed  CAS  Google Scholar 

  191. Mennerich, D., Vogel, A., Klaman, I., et al. (2004). Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours. European Journal of Cancer, 40(9), 1373–1382.

    PubMed  CAS  Google Scholar 

  192. Wiksten, J. P., Lundin, J., Nordling, S., et al. (2001). Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. International Journal of Cancer, 95(1), 1–6.

    CAS  Google Scholar 

  193. Kiviniemi, J., Kallajoki, M., Kujala, I., et al. (2004). Altered expression of syndecan-1 in prostate cancer. APMIS, 112(2), 89–97.

    PubMed  CAS  Google Scholar 

  194. Chen, D., Adenekan, B., Chen, L., et al. (2004). Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology, 63(2), 402–407.

    PubMed  Google Scholar 

  195. Zellweger, T., Ninck, C., Mirlacher, M., et al. (2003). Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate, 55(1), 20–29.

    PubMed  Google Scholar 

  196. Hu, Y., Sun, H., Owens, R. T., et al. (2010). Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia, 12(10), 826–836.

    PubMed  CAS  Google Scholar 

  197. Edwards, I. J., Sun, H., Hu, Y., et al. (2008). In vivo and in vitro regulation of syndecan 1 in prostate cells by N-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 283(26), 18441–18449.

    PubMed  CAS  Google Scholar 

  198. Edwards, I. J., Berquin, I. M., Sun, H., et al. (2004). Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin. Clinical Cancer Research, 10(24), 8275–8283.

    PubMed  CAS  Google Scholar 

  199. Sun, H., Berquin, I. M., & Edwards, I. J. (2005). Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Research, 65(10), 4442–4447.

    PubMed  CAS  Google Scholar 

  200. Park, P. W., Pier, G. B., Hinkes, M. T., & Bernfield, M. (2001). Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411(6833), 98–102.

    PubMed  CAS  Google Scholar 

  201. Li, Q., Park, P. W., Wilson, C. L., & Parks, W. C. (2002). Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell, 111(5), 635–646.

    PubMed  CAS  Google Scholar 

  202. Xu, J., Park, P. W., Kheradmand, F., & Corry, D. B. (2005). Endogenous attenuation of allergic lung inflammation by syndecan-1. Journal of Immunology, 174(9), 5758–5765.

    CAS  Google Scholar 

  203. Gotte, M., Joussen, A. M., Klein, C., et al. (2002). Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Investigative Ophthalmology & Visual Science, 43(4), 1135–1141.

    Google Scholar 

  204. Gotte, M., Bernfield, M., & Joussen, A. M. (2005). Increased leukocyte-endothelial interactions in syndecan-1-deficient mice involve heparan sulfate-dependent and -independent steps. Current Eye Research, 30(6), 417–422.

    PubMed  Google Scholar 

  205. Gardiner, T. A., Gibson, D. S., de Gooyer, T. E., de la Cruz, V. F., McDonald, D. M., & Stitt, A. W. (2005). Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. American Journal of Pathology, 166(2), 637–644.

    PubMed  CAS  Google Scholar 

  206. Kainulainen, V., Nelimarkka, L., Jarvelainen, H., Laato, M., Jalkanen, M., & Elenius, K. (1996). Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-alpha. Journal of Biological Chemistry, 271(31), 18759–18766.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berquin, I.M., Edwards, I.J., Kridel, S.J. et al. Polyunsaturated fatty acid metabolism in prostate cancer. Cancer Metastasis Rev 30, 295–309 (2011). https://doi.org/10.1007/s10555-011-9299-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9299-7

Keywords

Navigation