Skip to main content

Advertisement

Log in

Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The success of some chemo- and radiotherapeutic regimens relies on the induction of immunogenic tumor cell death and on the induction of an anticancer immune response. Cells succumbing to immunogenic cell death undergo specific changes in their surface characteristics and release pro-immunogenic factors according to a defined spatiotemporal pattern. This stimulates antigen presenting cells such as dendritic cells to efficiently take up tumor antigens, process them, and cross-prime cytotoxic T lymphocytes, thus eliciting a tumor-specific cognate immune response. Such a response can also target therapy-resistant tumor (stem) cells, thereby leading, at least in some instances, to tumor eradication. In this review, we shed some light on the molecular identity of the factors that are required for cell death to be perceived as immunogenic. We discuss the intriguing observations that the most abundant endoplasmic reticulum protein, calreticulin, the most abundant intracellular metabolite, ATP, and the most abundant non-histone chromatin-binding protein, HMGB1, can determine whether cell death is immunogenic as they appear on the surface or in the microenvironment of dying cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

CRT:

Calreticulin

DAMP:

Danger-associated molecular pattern

DC:

Dendritic cell

eIF2α:

Eukaryotic translation initiation factor 2α

EIF2AK3:

eIF2α kinase 3

ER:

Endoplasmic reticulum

ENTPD1:

Ectonucleoside triphosphate diphosphohydrolase

Gb3:

Globotriaosylceramide

HMGB1:

High-mobility group box 1

HSP:

Heat shock protein

ICD:

Immunogenic cell death

IFN-γ:

Interferon-γ

IL-1β:

Interleukin-1β

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

MYD88:

Myeloid differentiation primary response protein 88

NLRP3:

NLR family, pyrin domain containing 3

NO:

Nitric oxide

oxLDLs:

Oxidized low-density lipoproteins

PAMP:

Pathogen-associated molecular pattern

PS:

Phosphatidylserine

PYCARD:

PYD and CARD domain containing

RNAi:

RNA interference

SIRPα:

Signal-regulatory protein α

SNARE:

SNAP and NSF attachment receptors

SNCEE:

S-nitroso-l-cysteine ethyl esther

SPA:

Surfactant protein A

TLR:

Toll-like receptor

WT:

Wild type

References

  1. Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59–73.

    Article  PubMed  CAS  Google Scholar 

  2. Savill, J., & Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature, 407(6805), 784–788.

    Article  PubMed  CAS  Google Scholar 

  3. Matzinger, P. (2002). The danger model: a renewed sense of self. Science, 296(5566), 301–305.

    Article  PubMed  CAS  Google Scholar 

  4. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., et al. (2009). Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ, 16(1), 3–11.

    Article  PubMed  CAS  Google Scholar 

  5. Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol, 6(4), 295–307.

    Article  PubMed  CAS  Google Scholar 

  6. Rubio, M. T., Ittelet, D., Raymond, E., Blay, J. Y., Bernard, J., & Chouaib, S. (2004). The immunosuppressive effect of vincristine on allostimulatory potential of human dendritic cells interferes with their function and survival. Int J Oncol, 25(2), 407–412.

    PubMed  CAS  Google Scholar 

  7. Zitvogel, L., Apetoh, L., Ghiringhelli, F., Andre, F., Tesniere, A., & Kroemer, G. (2008). The anticancer immune response: indispensable for therapeutic success? J Clin Invest, 118(6), 1991–2001.

    Article  PubMed  CAS  Google Scholar 

  8. Casares, N., Pequignot, M. O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., et al. (2005). Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med, 202(12), 1691–1701.

    Article  PubMed  CAS  Google Scholar 

  9. Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G. M., Apetoh, L., Perfettini, J. L., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med, 13(1), 54–61.

    Article  PubMed  CAS  Google Scholar 

  10. Jung, S., Unutmaz, D., Wong, P., Sano, G., De los Santos, K., Sparwasser, T., et al. (2002). In vivo depletion of cd11c+ dendritic cells abrogates priming of cd8+ t cells by exogenous cell-associated antigens. Immunity, 17(2), 211–220.

    Article  PubMed  CAS  Google Scholar 

  11. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med, 13(9), 1050–1059.

    Article  PubMed  CAS  Google Scholar 

  12. Apetoh, L., Ghiringhelli, F., Tesniere, A., Criollo, A., Ortiz, C., Lidereau, R., et al. (2007). The interaction between hmgb1 and tlr4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev, 220, 47–59.

    Article  PubMed  CAS  Google Scholar 

  13. Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009). Activation of the nlrp3 inflammasome in dendritic cells induces il-1beta-dependent adaptive immunity against tumors. Nat Med, 15(10), 1170–1178.

    Article  PubMed  CAS  Google Scholar 

  14. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252.

    Article  PubMed  CAS  Google Scholar 

  15. Albert, M. L., Sauter, B., & Bhardwaj, N. (1998). Dendritic cells acquire antigen from apoptotic cells and induce class i-restricted ctls. Nature, 392(6671), 86–89.

    Article  PubMed  CAS  Google Scholar 

  16. Green, D. R., Ferguson, T., Zitvogel, L., & Kroemer, G. (2009). Immunogenic and tolerogenic cell death. Nat Rev Immunol, 9(5), 353–363.

    Article  PubMed  CAS  Google Scholar 

  17. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.

    Article  PubMed  CAS  Google Scholar 

  18. Zitvogel, L., Kepp, O., & Kroemer, G. (2010). Decoding cell death signals in inflammation and immunity. Cell, 140(6), 798–804.

    Article  PubMed  CAS  Google Scholar 

  19. Zitvogel, L., Mayordomo, J. I., Tjandrawan, T., DeLeo, A. B., Clarke, M. R., Lotze, M. T., et al. (1996). Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med, 183(1), 87–97.

    Article  PubMed  CAS  Google Scholar 

  20. Spisek, R., Charalambous, A., Mazumder, A., Vesole, D. H., Jagannath, S., & Dhodapkar, M. V. (2007). Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood, 109(11), 4839–4845.

    Article  PubMed  CAS  Google Scholar 

  21. Mukhopadhaya, A., Mendecki, J., Dong, X., Liu, L., Kalnicki, S., Garg, M., et al. (2007). Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res, 67(16), 7798–7806.

    Article  PubMed  CAS  Google Scholar 

  22. Didelot, C., Lanneau, D., Brunet, M., Joly, A. L., De Thonel, A., Chiosis, G., et al. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem, 14(27), 2839–2847.

    Article  PubMed  CAS  Google Scholar 

  23. Locher, C., Rusakiewicz, S., Tesniere, A., Ghiringhelli, F., Apetoh, L., Kroemer, G., et al. (2009). Witch hunt against tumor cells enhanced by dendritic cells. Ann NY Acad Sci, 1174, 51–60.

    Article  PubMed  CAS  Google Scholar 

  24. Gardai, S. J., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Starefeldt, A., Murphy-Ullrich, J. E., et al. (2005). Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of lrp on the phagocyte. Cell, 123(2), 321–334.

    Article  PubMed  CAS  Google Scholar 

  25. Kepp, O., Gdoura, A., Martins, I., Panaretakis, T., Schlemmer, F., Tesniere, A., et al. (2010). Lysyl tRNA synthetase is required for the translocation of calreticulin to the cell surface in immunogenic death. Cell Cycle, 9(15), 3072–3077.

    Article  PubMed  CAS  Google Scholar 

  26. Krause, K. H., & Michalak, M. (1997). Calreticulin. Cell, 88(4), 439–443.

    Article  PubMed  CAS  Google Scholar 

  27. Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K., & Opas, M. (1999). Calreticulin: one protein, one gene, many functions. Biochem J, 344(Pt 2), 281–292.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson, S., Michalak, M., Opas, M., & Eggleton, P. (2001). The ins and outs of calreticulin: from the er lumen to the extracellular space. Trends Cell Biol, 11(3), 122–129.

    Article  PubMed  CAS  Google Scholar 

  29. Bedard, K., Szabo, E., Michalak, M., & Opas, M. (2005). Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and erp57. Int Rev Cytol, 245, 91–121.

    Article  PubMed  CAS  Google Scholar 

  30. Panaretakis, T., Kepp, O., Brockmeier, U., Tesniere, A., Bjorklund, A. C., Chapman, D. C., et al. (2009). Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J, 28(5), 578–590.

    Article  PubMed  CAS  Google Scholar 

  31. Breckenridge, D. G., Stojanovic, M., Marcellus, R. C., & Shore, G. C. (2003). Caspase cleavage product of bap31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol, 160(7), 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  32. Kroemer, G., Galluzzi, L., & Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev, 87(1), 99–163.

    Article  PubMed  CAS  Google Scholar 

  33. Kepp, O., Senovilla, L., Galluzzi, L., Panaretakis, T., Tesniere, A., Schlemmer, F., et al. (2009). Viral subversion of immunogenic cell death. Cell Cycle, 8(6), 860–869.

    Article  PubMed  CAS  Google Scholar 

  34. Panaretakis, T., Joza, N., Modjtahedi, N., Tesniere, A., Vitale, I., Durchschlag, M., et al. (2008). The co-translocation of erp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ, 15(9), 1499–1509.

    Article  PubMed  CAS  Google Scholar 

  35. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol, 148(7), 2207–2216.

    CAS  Google Scholar 

  36. Tyurina, Y. Y., Basova, L. V., Konduru, N. V., Tyurin, V. A., Potapovich, A. I., Cai, P., et al. (2007). Nitrosative stress inhibits the aminophospholipid translocase resulting in phosphatidylserine externalization and macrophage engulfment: implications for the resolution of inflammation. J Biol Chem, 282(11), 8498–8509.

    Article  PubMed  CAS  Google Scholar 

  37. Tarr, J. M., Young, P. J., Morse, R., Shaw, D. J., Haigh, R., Petrov, P. G., et al. (2010). A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol, 401(5), 799–812.

    Article  PubMed  CAS  Google Scholar 

  38. Latour, S., Tanaka, H., Demeure, C., Mateo, V., Rubio, M., Brown, E. J., et al. (2001). Bidirectional negative regulation of human T and dendritic cells by cd47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol, 167(5), 2547–2554.

    PubMed  CAS  Google Scholar 

  39. Oldenborg, P. A., Gresham, H. D., & Lindberg, F. P. (2001). Cd47-signal regulatory protein alpha (sirpalpha) regulates fcgamma and complement receptor-mediated phagocytosis. J Exp Med, 193(7), 855–862.

    Article  PubMed  CAS  Google Scholar 

  40. Castelli, C., Ciupitu, A. M., Rini, F., Rivoltini, L., Mazzocchi, A., Kiessling, R., et al. (2001). Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res, 61(1), 222–227.

    PubMed  CAS  Google Scholar 

  41. Gehrmann, M., Liebisch, G., Schmitz, G., Anderson, R., Steinem, C., De Maio, A., et al. (2008). Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS ONE, 3(4), e1925.

    Article  PubMed  Google Scholar 

  42. Chen, T., Guo, J., Han, C., Yang, M., & Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol, 182(3), 1449–1459.

    PubMed  CAS  Google Scholar 

  43. Delamarre, L., Couture, R., Mellman, I., & Trombetta, E. S. (2006). Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med, 203(9), 2049–2055.

    Article  PubMed  CAS  Google Scholar 

  44. Shiratsuchi, A., Watanabe, I., Takeuchi, O., Akira, S., & Nakanishi, Y. (2004). Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol, 172(4), 2039–2047.

    PubMed  CAS  Google Scholar 

  45. Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 29(4), 482–491.

    Article  PubMed  CAS  Google Scholar 

  46. Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein hmgb1 by necrotic cells triggers inflammation. Nature, 418(6894), 191–195.

    Article  PubMed  CAS  Google Scholar 

  47. Bell, C. W., Jiang, W., Reich, C. F., III, & Pisetsky, D. S. (2006). The extracellular release of hmgb1 during apoptotic cell death. Am J Physiol Cell Physiol, 291(6), C1318–1325.

    Article  PubMed  CAS  Google Scholar 

  48. Andersson, U., Wang, H., Palmblad, K., Aveberger, A. C., Bloom, O., Erlandsson-Harris, H., et al. (2000). High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med, 192(4), 565–570.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrellino, M., Che, J., et al. (1999). HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285(5425), 248–251.

    Article  PubMed  CAS  Google Scholar 

  50. Bonaldi, T., Talamo, F., Scaffidi, P., Ferrera, D., Porto, A., Bachi, A., et al. (2003). Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J, 22(20), 5551–5560.

    Article  PubMed  CAS  Google Scholar 

  51. Gardella, S., Andrei, C., Ferrera, D., Lotti, L. V., Torrisi, M. R., Bianchi, M. E., et al. (2002). The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep, 3(10), 995–1001.

    Article  PubMed  CAS  Google Scholar 

  52. Sancho, D., Joffre, O. P., Keller, A. M., Rogers, N. C., Martinez, D., Hernanz-Falcon, P., et al. (2009). Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature, 458(7240), 899–903.

    Article  PubMed  CAS  Google Scholar 

  53. Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  54. Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832.

    Article  PubMed  CAS  Google Scholar 

  55. Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol, 10(3), 241–247.

    Article  PubMed  CAS  Google Scholar 

  56. Latz, E. (2010). The inflammasomes: mechanisms of activation and function. Curr Opin Immunol, 22(1), 28–33.

    Article  PubMed  CAS  Google Scholar 

  57. Martins, I., Tesniere, A., Kepp, O., Michaud, M., Schlemmer, F., Senovilla, L., et al. (2009). Chemotherapy induces ATP release from tumor cells. Cell Cycle, 8(22), 3723–3728.

    Article  PubMed  CAS  Google Scholar 

  58. Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., et al. (2006). The P2X7 receptor: a key player in IL-1 processing and release. J Immunol, 176(7), 3877–3883.

    PubMed  CAS  Google Scholar 

  59. Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461(7261), 282–286.

    Article  PubMed  CAS  Google Scholar 

  60. Stout, C. E., Costantin, J. L., Naus, C. C., & Charles, A. C. (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem, 277(12), 10482–10488.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Z., Chen, G., Zhou, W., Song, A., Xu, T., Luo, Q., et al. (2007). Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol, 9(8), 945–953.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GK is supported by the Ligue Nationale contre le Cancer (Equipes labellisée), Agence Nationale pour la Recherche (ANR), European Commission (Apo-Sys, ChemoRes, ApopTrain), Fondation pour la Recherche Médicale (FRM), Institut National du Cancer (INCa), and Cancéropôle Ile-de-France. IM is supported by the Ligue Nationale contre le Cancer, OK by AICR, LG by Apo-Sys and FS by FRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Additional information

Oliver Kepp and Lorenzo Galluzzi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kepp, O., Galluzzi, L., Martins, I. et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 30, 61–69 (2011). https://doi.org/10.1007/s10555-011-9273-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9273-4

Keywords

Navigation