Skip to main content

Advertisement

Log in

Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

KRAS and epidermal growth factor receptor (EGFR) are the two most frequently mutated proto-oncogenes in adenocarcinoma of the lung. The occurrence of these two oncogenic mutations is mutually exclusive, and they exhibit many contrasting characteristics such as clinical background, pathological features of patients harboring each mutation, and prognostic or predictive implications. Lung cancers harboring the EGFR mutations are remarkably sensitive to EGFR tyrosine kinase inhibitors such as gefitinib or erlotinib. This discovery has dramatically changed the clinical treatment of lung cancer in that it almost doubled the duration of survival for lung cancer patients with an EGFR mutation. In this review, we describe the features of KRAS mutations in lung cancer and contrast these with the features of EGFR mutations. Recent strategies to combat lung cancer harboring KRAS mutations are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shih, C., Padhy, L. C., Murray, M., & Weinberg, R. A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290, 261–264.

    Article  PubMed  CAS  Google Scholar 

  2. Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J., & Wigler, M. (1981). Human-tumor-derived cell lines contain common and different transforming genes. Cell, 27, 467–476.

    Article  PubMed  CAS  Google Scholar 

  3. Krontiris, T. G., & Cooper, G. M. (1981). Transforming activity of human tumor DNAs. Proceedings of the National Academy of Sciences of the United States of America, 78, 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  4. Der, C. J., Krontiris, T. G., & Cooper, G. M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proceedings of the National Academy of Sciences of the United States of America, 79, 3637–3640.

    Article  PubMed  CAS  Google Scholar 

  5. Goldfarb, M., Shimizu, K., Perucho, M., & Wigler, M. (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature, 296, 404–409.

    Article  PubMed  CAS  Google Scholar 

  6. Parada, L. F., Tabin, C. J., Shih, C., & Weinberg, R. A. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature, 297, 474–478.

    Article  PubMed  CAS  Google Scholar 

  7. Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982). Mechanism of activation of a human oncogene. Nature, 300, 143–149.

    Article  PubMed  CAS  Google Scholar 

  8. Reddy, E. P., Reynolds, R. K., Santos, E., & Barbacid, M. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 300, 149–152.

    Article  PubMed  CAS  Google Scholar 

  9. Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., & Wigler, M. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature, 300, 762–765.

    Article  PubMed  CAS  Google Scholar 

  10. Bos, J. (1988). The ras gene family and human carcinogenesis. Mutation Research, 195, 255–271.

    PubMed  CAS  Google Scholar 

  11. Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., et al. (1983). Three human transforming genes are related to the viral ras oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 80, 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  12. Hall, A., Marshall, C. J., Spurr, N. K., & Weiss, R. A. (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature, 303, 396–400.

    Article  PubMed  CAS  Google Scholar 

  13. DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C., et al. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell, 69, 265–273.

    Article  PubMed  CAS  Google Scholar 

  14. Trahey, M., & McCormick, F. (1987). A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science, 1987(238), 542–545.

    Article  Google Scholar 

  15. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., & Lowy, D. R. (1984). Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. The EMBO Journal, 3, 2581–2585.

    PubMed  CAS  Google Scholar 

  16. Casey, P. J., Solski, P. A., Der, C. J., & Buss, J. E. (1989). p21ras is modified by a farnesyl isoprenoid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8323–8327.

    Article  PubMed  CAS  Google Scholar 

  17. Schaber, M. D., O'Hara, M. B., Garsky, V. M., Mosser, S. C., Bergstrom, J. D., Moores, S. L., et al. (1990). Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. The Journal of Biological Chemistry, 265, 14701–14704.

    PubMed  CAS  Google Scholar 

  18. Hancock, J. F., Paterson, H., & Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133–139.

    Article  PubMed  CAS  Google Scholar 

  19. Patek, C. E., Arends, M. J., Wallace, W. A., Luo, F., Hagan, S., Brownstein, D. G., et al. (2008). Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Experimental Cell Research, 314, 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  20. To, M. D., Wong, C. E., Karnezis, A. N., Del Rosario, R., Di Lauro, R., & Balmain, A. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genetics, 40, 1240–1244.

    Article  PubMed  CAS  Google Scholar 

  21. Newbold, R. F., & Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature, 304, 648–651.

    Article  PubMed  CAS  Google Scholar 

  22. Land, H., Parada, L. F., & Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596–602.

    Article  PubMed  CAS  Google Scholar 

  23. Ruley, H. E. (1983). Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, 304, 602–606.

    Article  PubMed  CAS  Google Scholar 

  24. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.

    Article  PubMed  CAS  Google Scholar 

  25. Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: split personalities. Nature Reviews Molecular Cell Biology, 9, 517–531.

    Article  PubMed  CAS  Google Scholar 

  26. Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128, 295–308.

    Article  PubMed  CAS  Google Scholar 

  27. Tuveson, D. A., Shaw, A. T., Willis, N. A., Silver, D. P., Jackson, E. L., Chang, S., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5, 375–387.

    Article  PubMed  CAS  Google Scholar 

  28. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436, 642.

    Article  PubMed  CAS  Google Scholar 

  29. Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Della Porta, G., & Barbacid, M. (1984). Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science, 223, 661–664.

    Article  PubMed  CAS  Google Scholar 

  30. Rodenhuis, S., van de Wetering, M. L., Mooi, W. J., Evers, S. G., van Zandwijk, N., & Bos, J. L. (1987). Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. The New England Journal of Medicine, 317, 929–935.

    PubMed  CAS  Google Scholar 

  31. Mitsudomi, T., Viallet, J., Linnoila, R. I., Mulshine, J. L., Minna, J. D., & Gazdar, A. F. (1991). Mutations of ras genes distinguish a subset of non-small cell lung cancer cell lines from small cell lung cancer cell lines. Oncogene, 6, 1353–1362.

    PubMed  CAS  Google Scholar 

  32. Shigematsu, H., Takahashi, T., Nomura, M., Majmudar, K., Suzuki, M., Lee, H., et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Research, 65, 1642–1646.

    Article  PubMed  CAS  Google Scholar 

  33. Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97, 339–346.

    PubMed  CAS  Google Scholar 

  34. Slebos, R. J., Hruban, R. H., Dalesio, O., Mooi, W. J., Offerhaus, G. J., & Rodenhuis, S. (1991). Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. Journal of the National Cancer Institute, 83, 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  35. Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64, 8919–8923.

    Article  PubMed  CAS  Google Scholar 

  36. Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  37. Gealy, R., Zhang, L., Siegfried, J. M., Luketich, J. D., & Keohavong, P. (1999). Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiology, Biomarkers & Prevention, 8, 297–302.

    CAS  Google Scholar 

  38. Vahakangas, K. H., Bennett, W. P., Castren, K., Welsh, J. A., Khan, M. A., Blomeke, B., et al. (2001). p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Research, 61, 4350–4356.

    PubMed  CAS  Google Scholar 

  39. Riely, G. J., Kris, M. G., Rosenbaum, D., Marks, J., Li, A., Chitale, D. A., et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clinical Cancer Research, 14, 5731–5734.

    Article  PubMed  CAS  Google Scholar 

  40. Bos, J. L. (1989). ras oncogenes in human cancer: a review. Cancer Research, 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  41. Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450, 893–898.

    Article  PubMed  CAS  Google Scholar 

  42. Kendall, J., Liu, Q., Bakleh, A., Krasnitz, A., Nguyen, K. C., Lakshmi, B., et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 16663–16668.

    Article  PubMed  Google Scholar 

  43. Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One, 4, e7464.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, Z., Wang, Y., Vikis, H. G., Johnson, L., Liu, G., Li, J., et al. (2001). Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 29, 25–33.

    Article  PubMed  CAS  Google Scholar 

  45. Diaz, R., Lue, J., Mathews, J., Yoon, A., Ahn, D., Garcia-Espana, A., et al. (2005). Inhibition of Ras oncogenic activity by Ras protooncogenes. International Journal of Cancer, 113, 241–248.

    Article  CAS  Google Scholar 

  46. To, M. D., Perez-Losada, J., Mao, J. H., Hsu, J., Jacks, T., & Balmain, A. (2006). A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genetics, 38, 926–930.

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi, T., Tsuda, H., Noguchi, M., Hirohashi, S., Shimosato, Y., Goya, T., et al. (1990). Association of point mutation in c-Ki-ras oncogene in lung adenocarcinoma with particular reference to cytologic subtypes. Cancer, 66, 289–294.

    Article  PubMed  CAS  Google Scholar 

  48. Tsuchiya, E., Furuta, R., Wada, N., Nakagawa, K., Ishikawa, Y., Kawabuchi, B., et al. (1995). High K-ras mutation rates in goblet-cell-type adenocarcinomas of the lungs. Journal of Cancer Research and Clinical Oncology, 121, 577–581.

    Article  PubMed  CAS  Google Scholar 

  49. Marchetti, A., Buttitta, F., Pellegrini, S., Chella, A., Bertacca, G., Filardo, A., et al. (1996). Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. The Journal of Pathology, 179, 254–259.

    Article  PubMed  CAS  Google Scholar 

  50. Yatabe, Y., Koga, T., Mitsudomi, T., & Takahashi, T. (2004). CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. The Journal of Pathology, 203, 645–652.

    Article  PubMed  CAS  Google Scholar 

  51. Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  52. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350, 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  53. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101, 13306–13311.

    Article  PubMed  CAS  Google Scholar 

  54. Mitsudomi, T., & Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98, 1817–1824.

    Article  PubMed  CAS  Google Scholar 

  55. Leidner, R. S., Fu, P., Clifford, B., Hamdan, A., Jin, C., Eisenberg, R., et al. (2009). Genetic abnormalities of the EGFR pathway in African American patients with non-small-cell lung cancer. Journal of Clinical Oncology, 27, 5620–5626.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuo, K., Ito, H., Yatabe, Y., Hiraki, A., Hirose, K., Wakai, K., et al. (2007). Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Science, 98, 96–101.

    Article  PubMed  CAS  Google Scholar 

  57. Slebos, R. J., Kibbelaar, R. E., Dalesio, O., Kooistra, A., Stam, J., Meijer, C. J., et al. (1990). K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. The New England Journal of Medicine, 323, 561–565.

    Article  PubMed  CAS  Google Scholar 

  58. Mascaux, C., Iannino, N., Martin, B., Paesmans, M., Berghmans, T., Dusart, M., et al. (2005). The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 92, 131–139.

    Article  PubMed  CAS  Google Scholar 

  59. Kosaka, T., Yatabe, Y., Onozato, R., Kuwano, H., & Mitsudomi, T. (2009). Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. Journal of Thoracic Oncology, 4, 22–29.

    PubMed  Google Scholar 

  60. Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 21, 2237–2246.

    Article  PubMed  CAS  Google Scholar 

  61. Kris, M. G., Natale, R. B., Herbst, R. S., Lynch, T. J., Jr., Prager, D., Belani, C. P., et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. The Journal of the American Medical Association, 290, 2149–2158.

    Article  CAS  Google Scholar 

  62. Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305, 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  63. Mitsudomi, T., Kosaka, T., Endoh, H., Horio, Y., Hida, T., Mori, S., et al. (2005). Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. Journal of Clinical Oncology, 23, 2513–2520.

    Article  PubMed  CAS  Google Scholar 

  64. Takano, T., Fukui, T., Ohe, Y., Tsuta, K., Yamamoto, S., Nokihara, H., et al. (2008). EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. Journal of Clinical Oncology, 26, 5589–5595.

    Article  PubMed  CAS  Google Scholar 

  65. Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., et al. (2005). Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of the National Cancer Institute, 97, 643–655.

    Article  PubMed  CAS  Google Scholar 

  66. Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England Journal of Medicine, 361, 947–957.

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi, K., Inoue, A., Maemondo, M., Sugawara, S., Isobe, H., Oizumi, S., et al. (2009). First-line gefitinib versus first-line chemotherapy by carboplatin (CBDCA) plus paclitaxel (TXL) in non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations: a phase III study (002) by North East Japan Gefitinib Study Group. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8016).

    Article  Google Scholar 

  68. Tsurutani, J., Mitsudomi, T., Mori, S., Okamoto, I., Nozaki, K., Tada, H., et al. (2009). A phase III, first-line trial of gefitinib versus cisplatin plus docetaxel for patients with advanced or recurrent non-small cell lungcancer (NSCLC) harboring activating mutation of the epidermal growthfactor receptor (EGFR) gene: a preliminary results of WJTOG 3405. European Journal of Cancer, 7(Suppl), 505(abstr O-9002).

    Google Scholar 

  69. Pao, W., Wang, T. Y., Riely, G. J., Miller, V. A., Pan, Q., Ladanyi, M., et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine, 2, e17.

    Article  PubMed  CAS  Google Scholar 

  70. Murray, S., Dahabreh, I. J., Linardou, H., Manoloukos, M., Bafaloukos, D., & Kosmidis, P. (2008). Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: an analytical database. Journal of Thoracic Oncology, 3, 832–839.

    Article  PubMed  Google Scholar 

  71. Jackman, D. M., Miller, V. A., Cioffredi, L. A., Yeap, B. Y., Janne, P. A., Riely, G. J., et al. (2009). Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clinical Cancer Research, 15, 5267–5273.

    Article  PubMed  CAS  Google Scholar 

  72. O'Byrne, K. J., Bondarenko, I., Barrios, C., Eschbach, C., Martens, U., Hotko, Y., et al. (2009). Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8007).

    Article  Google Scholar 

  73. Lynch, T. J., Patel, T., Dreisbach, L., McCleod, M., Heim, W. J., Robert, H., et al. (2007). A randomized multicenter phase III study of cetuximab in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer. Journal of Thoracic Oncology, 2, s340.

    Article  Google Scholar 

  74. Cutsem, E.V., Lang, I., D'haens, G., Moiseyenko, V., Zaluski J., Folprecht G., et al. (2008). KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. Journal of Clinical Oncology, 26, abstr 2.

    Google Scholar 

  75. Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.

    Article  PubMed  CAS  Google Scholar 

  76. Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68, 3077–80. discussion 80.

    Article  PubMed  CAS  Google Scholar 

  77. Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 15, 489–500.

    Article  PubMed  CAS  Google Scholar 

  78. Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-beta. The Journal of Biological Chemistry, 284, 245–253.

    Article  PubMed  CAS  Google Scholar 

  79. Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell, 129, 957–968.

    Article  PubMed  CAS  Google Scholar 

  80. Yang, Y., Iwanaga, K., Raso, M. G., Wislez, M., Hanna, A. E., Wieder, E. D., et al. (2008). Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One, 3, e2220.

    Article  PubMed  CAS  Google Scholar 

  81. Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14, 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  82. Wee, S., Jagani, Z., Xiang, K. X., Loo, A., Dorsch, M., Yao, Y. M., et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Research, 69, 4286–4293.

    Article  PubMed  CAS  Google Scholar 

  83. Sos, M. L., Michel, K., Zander, T., Weiss, J., Frommolt, P., Peifer, M., et al. (2009). Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. The Journal of Clinical Investigation, 119, 1727–1740.

    Article  PubMed  CAS  Google Scholar 

  84. Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137, 821–834.

    Article  PubMed  CAS  Google Scholar 

  85. Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.

    Article  PubMed  CAS  Google Scholar 

  86. Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462, 108–112.

    Article  PubMed  CAS  Google Scholar 

  87. Chien, Y., Kim, S., Bumeister, R., Loo, Y. M., Kwon, S. W., Johnson, C. L., et al. (2006). RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell, 127, 157–170.

    Article  PubMed  CAS  Google Scholar 

  88. Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462, 104–107.

    Article  PubMed  CAS  Google Scholar 

  89. Shimamura, T., Ji, H., Minami, Y., Thomas, R. K., Lowell, A. M., Shah, K., et al. (2006). Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Research, 66, 6487–6491.

    Article  PubMed  CAS  Google Scholar 

  90. Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561–566.

    Article  PubMed  CAS  Google Scholar 

  91. Koivunen, J. P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A. J., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clinical Cancer Research, 14, 4275–4283.

    Article  PubMed  CAS  Google Scholar 

  92. Morita, S., Okamoto, I., Kobayashi, K., Yamazaki, K., Asahina, H., Inoue, A., et al. (2009). Combined Survival Analysis of Prospective Clinical Trials of Gefitinib for Non-Small Cell Lung Cancer with EGFR Mutations. Clinical Cancer Research, 15, 4493–4498.

    Article  PubMed  CAS  Google Scholar 

  93. Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372, 1809–1818.

    Article  PubMed  CAS  Google Scholar 

  94. Maruyama, R., Nishiwaki, Y., Tamura, T., Yamamoto, N., Tsuboi, M., Nakagawa, K., et al. (2008). Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. Journal of Clinical Oncology, 26, 4244–4252.

    Article  PubMed  CAS  Google Scholar 

  95. Lee, J. C., Vivanco, I., Beroukhim, R., Huang, J. H., Feng, W. L., DeBiasi, R. M., et al. (2006). Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Medicine, 3, e485.

    Article  PubMed  CAS  Google Scholar 

  96. Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5, 341–354.

    Article  PubMed  CAS  Google Scholar 

  97. Mitin, N., Rossman, K. L., & Der, C. J. (2005). Signaling interplay in Ras superfamily function. Current Biology, 15, R563–574.

    Article  PubMed  CAS  Google Scholar 

  98. Repasky, G. A., Chenette, E. J., & Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends in Cell Biology, 14, 639–647.

    Article  PubMed  CAS  Google Scholar 

  99. Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7, 295–308.

    Article  PubMed  CAS  Google Scholar 

  100. Downward, J. (2009). Cancer: A tumour gene's fatal flaws. Nature, 462, 44–45.

    Article  PubMed  CAS  Google Scholar 

  101. Tam, I. Y., Chung, L. P., Suen, W. S., Wang, E., Wong, M. C., Ho, K. K., et al. (2006). Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clinical Cancer Research, 12, 1647–1653.

    Article  PubMed  CAS  Google Scholar 

  102. Rudin, C. M., Avila-Tang, E., Harris, C. C., Herman, J. G., Hirsch, F. R., Pao, W., et al. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clinical Cancer Research, 15, 5646–5661.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Mitsudomi.

Additional information

Supported in part by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (20903076) and grant from the Kobayashi Institute for Innovative Cancer Chemotherapy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suda, K., Tomizawa, K. & Mitsudomi, T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 29, 49–60 (2010). https://doi.org/10.1007/s10555-010-9209-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9209-4

Keywords

Navigation