Skip to main content

Advertisement

Log in

Hypoxia, gene expression, and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Hypoxia poses many problems to the treatment of cancer. Hypoxic tumors are more resistant to chemotherapy and radiation. In addition, hypoxia induces a number of genes responsible for increased invasion, aggressiveness, and metastasis of tumors. The augmented metastatic potential due to hypoxia-mediated gene expression is discussed in this section. Particular attention is given to recent studies of specific genes involved in the key steps of metastasis, including extracellular matrix interactions, migration, and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, J. M., & Giaccia, A. J. (1998). The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Research, 58, 1408–1416.

    PubMed  CAS  Google Scholar 

  2. Hockel, M., Schlenger, K., Knoop, C., & Vaupel, P. (1991). Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized O2 tension measurements. Cancer Research, 51, 6098–6102.

    PubMed  CAS  Google Scholar 

  3. Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.

    PubMed  CAS  Google Scholar 

  4. Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  5. Grunt, T. W., Lametschwandtner, A., & Staindl, O. (1985). The vascular pattern of basal cell tumors: Light microscopy and scanning electron microscopic study on vascular corrosion casts. Microvascular Research, 29, 371–386.

    Article  PubMed  CAS  Google Scholar 

  6. Dewhirst, M. W., Tso, C. Y., Oliver, R., Gustafson, C. S., Secomb, T. W., & Gross, J. F. (1989). Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. International Journal of Radiation Oncology, Biology, Physics, 17, 91–99.

    PubMed  CAS  Google Scholar 

  7. Shah-Yukich, A. A., & Nelson, A. C. (1988). Characterization of solid tumor microvasculature: A three-dimensional analysis using the polymer casting technique. Laboratory Investigation, 58, 236–244.

    PubMed  CAS  Google Scholar 

  8. Endrich, B., Reinhold, H. S., Gross, J. F., & Intaglietta, M. (1979). Tissue perfusion inhomogeneity during early tumor growth in rats. Journal of the National Cancer Institute, 62, 387–395.

    PubMed  CAS  Google Scholar 

  9. Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. British Journal of Cancer, 22, 258–273.

    PubMed  CAS  Google Scholar 

  10. Kallman, R. F., & Dorie, M. J. (1986). Tumor oxygenation and reoxygenation during radiation therapy: Their importance in predicting tumor response. International Journal of Radiation Oncology, Biology, Physics, 12, 681–685.

    PubMed  CAS  Google Scholar 

  11. Hall, E. J. (1994). Molecular biology in radiation therapy: The potential impact of recombinant technology on clinical practice. International Journal of Radiation Oncology, Biology, Physics, 30, 1019–1028.

    PubMed  CAS  Google Scholar 

  12. Comerford, K. M., Wallace, T. J., Karhausen, J., Louis, N. A., Montalto, M. C., & Colgan, S. P. (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 62, 3387–3394.

    PubMed  CAS  Google Scholar 

  13. Wartenberg, M., Ling, F. C., Muschen, M., Klein, F., Acker, H., Gassmann, M., et al. (2003). Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB Journal, 17, 503–505.

    PubMed  CAS  Google Scholar 

  14. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88–91.

    Article  PubMed  CAS  Google Scholar 

  15. Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W., et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 284, 156–159.

    Article  PubMed  CAS  Google Scholar 

  16. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., et al. (1994). p53 status and the efficacy of cancer therapy in vivo. Science, 266, 807–810.

    Article  PubMed  CAS  Google Scholar 

  17. Bindra, R. S., & Glazer, P. M. (2005). Genetic instability and the tumor microenvironment: Towards the concept of microenvironment-induced mutagenesis. Mutation Research, 569, 75–85.

    PubMed  CAS  Google Scholar 

  18. Bindra, R. S., & Glazer, P. M. (2007). Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Letter (in press).

  19. Huang, L. E., Bindra, R. S., Glazer, P. M., & Harris, A. L. (2007). Hypoxia-induced genetic instability-a calculated mechanism underlying tumor progression. Journal of Molecular Medicine, 85, 139–148.

    Article  PubMed  CAS  Google Scholar 

  20. Koshiji, M., To, K. K., Hammer, S., Kumamoto, K., Harris, A. L., Modrich, P., et al. (2005). HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Molecular Cell, 17, 793–803.

    Article  PubMed  CAS  Google Scholar 

  21. Hockel, M., Knoop, C., Schlenger, K., Vorndran, B., Baussmann, E., Mitze, M., et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26, 45–50.

    Article  PubMed  CAS  Google Scholar 

  22. Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L. J., Bean, J. M., Prosnitz, L. R., et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Research, 56, 941–943.

    PubMed  CAS  Google Scholar 

  23. Hockel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U., & Vaupel, P. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research, 56, 4509–4515.

    PubMed  CAS  Google Scholar 

  24. Fyles, A. W., Milosevic, M., Wong, R., Kavanagh, M. C., Pintilie, M., Sun, A., et al. (1998). Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiotherapy and Oncology, 48, 149–156.

    Article  PubMed  CAS  Google Scholar 

  25. Nordsmark, M., Hoyer, M., Keller, J., Nielsen, O. S., Jensen, O. M., & Overgaard, J. (1996). The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. International Journal of Radiation Oncology, Biology, Physics, 35, 701–708.

    Article  PubMed  CAS  Google Scholar 

  26. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292, 464–468.

    PubMed  CAS  Google Scholar 

  27. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–472.

    PubMed  CAS  Google Scholar 

  28. Yu, F., White, S. B., Zhao, Q., & Lee, F. S. (2001). HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proceedings of the National Academy of Sciences of the USA, 98, 9630–9635.

    Article  PubMed  CAS  Google Scholar 

  29. Huang, L. E., Gu, J., Schau, M., & Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the USA, 95, 7987–7992.

    Article  PubMed  CAS  Google Scholar 

  30. Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., & Ratcliffe, P. J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO Journal, 20, 5197–5206.

    Article  PubMed  CAS  Google Scholar 

  31. Chan, D. A., Sutphin, P. D., Denko, N. C., & Giaccia, A. J. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. Journal of Biological Chemistry, 277, 40112–40117.

    Article  PubMed  CAS  Google Scholar 

  32. Chan, D. A., Sutphin, P. D., Yen, S. E., & Giaccia, A. J. (2005). Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Molecular and Cellular Biology, 25, 6415–6426.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107, 43–54.

    Article  PubMed  CAS  Google Scholar 

  34. Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  35. Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Development Biology, 15, 551–578.

    Article  CAS  Google Scholar 

  36. Hickey, M. M., & Simon, M. C. (2006). Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Current Topics in Developmental Biology, 76, 217–257.

    PubMed  CAS  Google Scholar 

  37. Brahimi-Horn, M. C., & Pouyssegur, J. (2007). Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochemical Pharmacology, 73, 450–457.

    Article  PubMed  CAS  Google Scholar 

  38. Denko, N. C., Fontana, L. A., Hudson, K. M., Sutphin, P. D., Raychaudhuri, S., Altman, R., et al. (2003). Investigating hypoxic tumor physiology through gene expression patterns. Oncogene, 22, 5907–5914.

    Article  PubMed  CAS  Google Scholar 

  39. Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhofer, N., Kong, C., Le, Q. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440, 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  40. Erler, J. T., & Giaccia, A. J. (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Research, 66, 10238–10241.

    Article  PubMed  CAS  Google Scholar 

  41. Higgins, D. F., Biju, M. P., Akai, Y., Wutz, A., Johnson, R. S., & Haase, V. H. (2004). Hypoxic induction of Ctgf is directly mediated by Hif-1. American Journal of Physiology. Renal Physiology, 287, F1223–F1232.

    Article  PubMed  CAS  Google Scholar 

  42. Wenger, C., Ellenrieder, V., Alber, B., Lacher, U., Menke, A., Hameister, H., et al. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene, 18, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  43. Dornhofer, N., Spong, S., Bennewith, K., Salim, A., Klaus, S., Kambham, N., et al. (2006). Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Research, 66, 5816–5827.

    Article  PubMed  Google Scholar 

  44. Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J., & Korc, M. (2006). Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Molecular Cancer Therapeutic, 5, 1108–1116.

    Article  CAS  Google Scholar 

  45. Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.

    Article  PubMed  CAS  Google Scholar 

  46. Esteban, M. A., Tran, M. G., Harten, S. K., Hill, P., Castellanos, M. C., Chandra, A., et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Research, 66, 3567–3575.

    Article  PubMed  CAS  Google Scholar 

  47. Evans, A. J., Russell, R. C., Roche, O., Burry, T. N., Fish, J. E., Chow, V. W., et al. (2007). VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Molecular and Cellular Biology, 27, 157–169.

    Article  PubMed  CAS  Google Scholar 

  48. Wang, J., Loberg, R., & Taichman, R. S. (2006). The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Reviews, 25, 573–587.

    PubMed  CAS  Google Scholar 

  49. Pore, N., & Maity, A. (2006). The Chemokine Receptor CXCR4: A Homing Device for Hypoxic Cancer Cells? Cancer Biology and Therapy, 5, 1563–1565.

    Article  PubMed  CAS  Google Scholar 

  50. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    Article  PubMed  CAS  Google Scholar 

  51. Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E. J., & Krek, W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.

    Article  PubMed  CAS  Google Scholar 

  52. Cooper, C. R., Sikes, R. A., Nicholson, B. E., Sun, Y. X., Pienta, K. J., & Taichman, R. S. (2004). Cancer cells homing to bone: the significance of chemotaxis and cell adhesion. Cancer Treatment and Research, 118, 291–309.

    PubMed  CAS  Google Scholar 

  53. Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.

    PubMed  CAS  Google Scholar 

  54. Robledo, M. M., Bartolome, R. A., Longo, N., Rodriguez-Frade, J. M., Mellado, M., Longo, I., et al. (2001). Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. Journal of Biological Chemistry, 276, 45098–45105.

    Article  PubMed  CAS  Google Scholar 

  55. Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11, 1835–1841.

    Article  PubMed  CAS  Google Scholar 

  56. Longo-Imedio, M. I., Longo, N., Trevino, I., Lazaro, P., & Sanchez-Mateos, P. (2005). Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. International Journal of Cancer, 117, 861–865.

    Article  CAS  Google Scholar 

  57. Scala, S., Giuliano, P., Ascierto, P. A., Ierano, C., Franco, R., Napolitano, M., et al. (2006). Human melanoma metastases express functional CXCR4. Clinical Cancer Research, 12, 2427–2433.

    Article  PubMed  CAS  Google Scholar 

  58. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.

    Article  PubMed  CAS  Google Scholar 

  59. Welford, S. M., Bedogni, B., Gradin, K., Poellinger, L., Broome Powell, M., & Giaccia, A. J. (2006). HIF1alpha delays premature senescence through the activation of MIF. Genes & Development, 20, 3366–3371.

    Article  CAS  Google Scholar 

  60. Lal, A., Peters, H., St Croix, B., Haroon, Z. A., Dewhirst, M. W., Strausberg, R. L., et al. (2001). Transcriptional response to hypoxia in human tumors. Journal of the National Cancer Institute, 93, 1337–1343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amato J. Giaccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, D.A., Giaccia, A.J. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26, 333–339 (2007). https://doi.org/10.1007/s10555-007-9063-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9063-1

Keywords

Navigation