Skip to main content

Advertisement

Log in

Matrix metalloproteinases and tumor metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Functions of individual matrix metalloproteinases (MMPs) differentially expressed by tumor cells and stromal cells, are finely regulated by their spatial as well as temporal interactions with distinct cellular and extracellular components of the tumor microenvironment and also distant pre-metastatic sites. Certain aspects of MMP involvement in tumor metastasis such as tumor-induced angiogenesis, tumor invasion, and establishment of metastatic foci at the secondary site, have received extensive attention that resulted in an overwhelming amount of experimental and observational data in favor of critical roles of MMPs in these processes. In particular, dependency of tumor angiogenesis on the activity of MMPs, especially that of MMP-9, renders this step possibly the most effective target of synthetic MMP inhibitors. MMP functioning in other stages of metastasis, including the escape of individual tumor cells from the primary tumor, their intravasation, survival in circulation, and extravasation at the secondary site, have not yet received enough consideration, resulting in insufficient or controversial data. The major pieces of evidence that are most compelling and clearly determine the role and involvement of MMPs in the metastatic cascade are provided by molecular genetic studies employing knock-out or transgenic animals and tumor cell lines, modified to overexpress or downregulate a specific MMP. Findings from all of these studies implicate different functional mechanisms for both tumor and stromal MMPs during distinct steps of the metastatic cascade and indicate that MMPs can exhibit pro-metastatic as well as anti-metastatic roles depending on their nature and the experimental setting. This dual function of individual MMPs in metastasis has become a major focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000

    PubMed  CAS  Google Scholar 

  2. Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572, 2002

    PubMed  CAS  Google Scholar 

  3. Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456, 2004

    PubMed  CAS  Google Scholar 

  4. Geho DH, Bandle RW, Clair T, Liotta LA: Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda) 20: 194–200, 2005

    CAS  Google Scholar 

  5. Hynes RO: Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell 113: 821–823, 2003

    PubMed  CAS  Google Scholar 

  6. Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17: 463–516, 2001

    PubMed  CAS  Google Scholar 

  7. Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174, 2002

    PubMed  CAS  Google Scholar 

  8. Lynch CC, Matrisian LM: Matrix metalloproteinases in tumor-host cell communication. Differentiation 70: 561–573, 2002

    PubMed  CAS  Google Scholar 

  9. Fingleton B: Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11: 479–491, 2006

    PubMed  CAS  Google Scholar 

  10. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic Potential Correlates with Enzymatic Degradation of Basement-Membrane Collagen. Nature 284: 67–68, 1980

    PubMed  CAS  Google Scholar 

  11. Liotta LA: Tumor invasion and metastases-role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res 46: 1–7, 1986

    PubMed  CAS  Google Scholar 

  12. Khanna C, Hunter K: Modeling metastasis in vivo. Carcinogenesis 26: 513–523, 2005

    PubMed  CAS  Google Scholar 

  13. Mueller MM, Fusenig NE: Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–849, 2004

    PubMed  CAS  Google Scholar 

  14. Lochter A, Sternlicht MD, Werb Z, Bissell MJ: The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci 857: 180–193, 1998

    PubMed  CAS  Google Scholar 

  15. Almholt K, Johnsen M: Stromal cell involvement in cancer. Recent Results Cancer Res 162: 31–42, 2003

    PubMed  CAS  Google Scholar 

  16. Kerkela E, Saarialho-Kere U: Matrix metalloproteinases in tumor progression: Focus on basal and squamous cell skin cancer. Exp Dermatol 12: 109–125, 2003

    PubMed  CAS  Google Scholar 

  17. Mook OR, Frederiks WM, Van Noorden CJ: The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705: 69–89, 2004

    PubMed  CAS  Google Scholar 

  18. Wagenaar-Miller RA, Gorden L, Matrisian LM: Matrix metalloproteinases in colorectal cancer: is it worth talking about? Cancer Metastasis Rev 23: 119–135, 2004

    PubMed  CAS  Google Scholar 

  19. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C: Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int J Dev Biol 48: 411–424, 2004

    PubMed  CAS  Google Scholar 

  20. Sounni NE, Noel A: Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87: 329–342, 2005

    PubMed  CAS  Google Scholar 

  21. Vihinen P, Ala-aho R, Kahari VM: Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 5: 203–220, 2005

    PubMed  CAS  Google Scholar 

  22. Hofmann UB, Houben R, Brocker EB, Becker JC: Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 87: 307–314, 2005

    PubMed  CAS  Google Scholar 

  23. Bjorklund M, Koivunen E: Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755: 37–69, 2005

    PubMed  Google Scholar 

  24. Ala-aho R, Kahari VM: Collagenases in cancer. Biochimie 87: 273–286, 2005

    PubMed  CAS  Google Scholar 

  25. Agarwal D, Goodison S, Nicholson B, Tarin D, Urquidi V: Expression of matrix metalloproteinase 8 (MMP-8) and tyrosinase-related protein-1 (TYRP-1) correlates with the absence of metastasis in an isogenic human breast cancer model. Differentiation 71: 114–125, 2003

    PubMed  CAS  Google Scholar 

  26. Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C: Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35: 252–257, 2003

    PubMed  CAS  Google Scholar 

  27. McCawley LJ, Crawford HC, King LE, Jr., Mudgett J, Matrisian LM: A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64: 6965–6972, 2004

    PubMed  CAS  Google Scholar 

  28. Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP: Molecular prognostic markers in pancreatic cancer: A systematic review. Eur J Cancer 41: 2213–2236, 2005

    PubMed  CAS  Google Scholar 

  29. Turpeenniemi-Hujanen T: Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87: 287–297, 2005

    PubMed  CAS  Google Scholar 

  30. Zucker S, Vacirca J: Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23: 101–117, 2004

    PubMed  CAS  Google Scholar 

  31. Tien YW, Lee PH, Hu RH, Hsu SM, Chang KJ: The role of gelatinase in hepatic metastasis of colorectal cancer. Clinical Cancer Research 9: 4891–4896, 2003

    PubMed  CAS  Google Scholar 

  32. Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S: High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res 11: 5158–5166, 2005

    PubMed  CAS  Google Scholar 

  33. Nakajima M, Welch DR, Wynn DM, Tsuruo T, Nicolson GL: Serum and plasma M(r) 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenocarcinoma. Cancer Res 53: 5802–5807, 1993

    PubMed  CAS  Google Scholar 

  34. Baker AH, Edwards DR, Murphy G: Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115: 3719–3727, 2002

    PubMed  CAS  Google Scholar 

  35. Jumper C, Cobos E, Lox C: Determination of the serum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in patients with either advanced small-cell lung cancer or non-small-cell lung cancer prior to treatment. Respir Med 98: 173–177, 2004

    PubMed  Google Scholar 

  36. Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ross JS: Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res 7: 3113–3119, 2001

    PubMed  CAS  Google Scholar 

  37. Montgomery AM, Mueller BM, Reisfeld RA, Taylor SM, DeClerck YA: Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res 54: 5467–5473, 1994

    PubMed  CAS  Google Scholar 

  38. Mueller BM: Different roles for plasminogen activators and metalloproteinases in melanoma metastasis. Curr Top Microbiol Immunol 213 (Pt 1): 65–80, 1996

    PubMed  CAS  Google Scholar 

  39. Rhee JS, Diaz R, Korets L, Hodgson JG, Coussens LM: TIMP-1 alters susceptibility to carcinogenesis. Cancer Res 64: 952–961, 2004

    PubMed  CAS  Google Scholar 

  40. Kong Y, Poon R, Nadesan P, Di Muccio T, Fodde R, Khokha R, Alman BA: Matrix metalloproteinase activity modulates tumor size, cell motility, and cell invasiveness in murine aggressive fibromatosis. Cancer Res 64: 5795–5803, 2004

    PubMed  CAS  Google Scholar 

  41. Dasgupta S, Bhattacharya-Chatterjee M, O'malley BW, Jr., Chatterjee SK: Tumor metastasis in an orthotopic murine model of head and neck cancer: Possible role of TGF-beta 1 secreted by the tumor cells. J Cell Biochem 2005

  42. Kido A, Tsutsumi M, Iki K, Takahama M, Tsujiuchi T, Morishita T, Tamai S, Konishi Y: Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats. Cancer Lett 137: 209–216, 1999

    PubMed  CAS  Google Scholar 

  43. Hofmann UB, Westphal JR, Zendman AJ, Becker JC, Ruiter DJ, Van Muijen GN: Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type 1 matrix metalloproteinase (MT1-MMP) correlate with melanoma progression. J Pathol 191: 245–256, 2000

    PubMed  CAS  Google Scholar 

  44. Kupferman ME, Fini ME, Muller WJ, Weber R, Cheng Y, Muschel RJ: Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am J Pathol 157: 1777–1783, 2000

    PubMed  CAS  Google Scholar 

  45. Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD: Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 109: 1437–1444, 2002

    PubMed  CAS  Google Scholar 

  46. Donadio AC, Durand S, Remedi MM, Frede S, Ceschin DG, Genti-Raimondi S, Chiabrando GA: Evaluation of stromal metalloproteinases and vascular endothelial growth factors in a spontaneous metastasis model. Exp Mol Pathol 79: 259–264, 2005

    PubMed  CAS  Google Scholar 

  47. Hofmann UB, Eggert AA, Blass K, Brocker EB, Becker JC: Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res 63: 8221–8225, 2003

    PubMed  CAS  Google Scholar 

  48. Shiraga M, Yano S, Yamamoto A, Ogawa H, Goto H, Miki T, Miki K, Zhang H, Sone S: Organ heterogeneity of host-derived matrix metalloproteinase expression and its involvement in multiple-organ metastasis by lung cancer cell lines. Cancer Res 62: 5967–5973, 2002

    PubMed  CAS  Google Scholar 

  49. Chu JH, Sun ZY, Meng XL, Wu JH, He GL, Liu GM, Jiang XR: Differential metastasis-associated gene analysis of prostate carcinoma cells derived from primary tumor and spontaneous lymphatic metastasis in nude mice with orthotopic implantation of PC-3M cells. Cancer Lett 2005

  50. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939, 2004

    PubMed  CAS  Google Scholar 

  51. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J: Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524, 2005

    PubMed  CAS  Google Scholar 

  52. Bodey B, Bodey B, Jr., Siegel SE, Kaiser HE: Significant differences in the matrix metalloproteinase expression profiles of spontaneous medulloblastomas/primitive neuroectodermal tumors as compared with their xenografted, established tumor cell line derived counterparts. In vivo 14: 675–682, 2000

  53. Balkwill F, Mantovani A: Inflammation and cancer: Back to Virchow? Lancet 357: 539–545, 2001

    PubMed  CAS  Google Scholar 

  54. Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J Pathol 196: 254–265, 2002

    PubMed  CAS  Google Scholar 

  55. Coussens LM, Werb Z: Inflammation and cancer. Nature 420: 860–867, 2002

    PubMed  CAS  Google Scholar 

  56. van Kempen LC, Ruiter DJ, Van Muijen GN, Coussens LM: The tumor microenvironment: A critical determinant of neoplastic evolution. Eur J Cell Biol 82: 539–548, 2003

    PubMed  Google Scholar 

  57. Owen JL, Iragavarapu-Charyulu V, Lopez DM: T cell-derived matrix metalloproteinase-9 in breast cancer: Friend or foe? Breast Dis 20: 145–153, 2004

    PubMed  CAS  Google Scholar 

  58. Lin EY, Pollard JW: Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 90: 2053–2058, 2004

    PubMed  CAS  Google Scholar 

  59. Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78, 2004

    PubMed  CAS  Google Scholar 

  60. Balkwill F, Charles KA, Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217, 2005

    PubMed  CAS  Google Scholar 

  61. Elkington PT, O'Kane CM, Friedland JS: The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 142: 12–20, 2005

    PubMed  CAS  Google Scholar 

  62. Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell 7: 513–520, 2005

    PubMed  CAS  Google Scholar 

  63. Peek RM, Jr., Mohla S, DuBois RN: Inflammation in the genesis and perpetuation of cancer: Summary and recommendations from a national cancer institute-sponsored meeting. Cancer Res 65: 8583–8586, 2005

    PubMed  CAS  Google Scholar 

  64. Naldini A, Carraro F: Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4: 3–8, 2005

    PubMed  CAS  Google Scholar 

  65. Littlepage LE, Egeblad M, Werb Z: Coevolution of cancer and stromal cellular responses. Cancer Cell 7: 499–500, 2005

    PubMed  CAS  Google Scholar 

  66. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827, 2005

    PubMed  CAS  Google Scholar 

  67. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744, 2000

    PubMed  CAS  Google Scholar 

  68. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637, 2002

    PubMed  CAS  Google Scholar 

  69. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2: 289–300, 2002

    PubMed  CAS  Google Scholar 

  70. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996

    PubMed  CAS  Google Scholar 

  71. Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103: 1237–1241, 1999

    Article  PubMed  CAS  Google Scholar 

  72. Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410, 2003

    PubMed  CAS  Google Scholar 

  73. Rundhaug JE: Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9: 267–285, 2005

    PubMed  CAS  Google Scholar 

  74. Handsley MM, Edwards DR: Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115: 849–860, 2005

    PubMed  CAS  Google Scholar 

  75. Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E: Mechanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases. Eur J Cancer 2006

  76. Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114: 623–633, 2004

    PubMed  CAS  Google Scholar 

  77. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S: Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048–1051, 1998

    PubMed  CAS  Google Scholar 

  78. Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490, 2000

    PubMed  CAS  Google Scholar 

  79. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ: Contributions of Stromal Metalloproteinase-9 to Angiogenesis and Growth of Human Ovarian Carcinoma in Mice. J Natl Cancer Inst 94: 1134–1142, 2002

    PubMed  CAS  Google Scholar 

  80. Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, Coussens LM, DeClerck YA: The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65: 3200–3208, 2005

    PubMed  CAS  Google Scholar 

  81. Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, Deryugina EI, Quigley JP: Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (Collagenase-3). J Biol Chem 279: 27633–27645, 2004

    PubMed  CAS  Google Scholar 

  82. Zijlstra A, Seandel M, Kupriyanova TA, Partridge JJ, Madsen MA, Hahn-Dantona EA, Quigley JP, Deryugina EI: Pro-angiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood 107: 317–327, 2005

    PubMed  Google Scholar 

  83. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA: Stromal Matrix Metalloproteinase-9 Regulates the Vascular Architecture in Neuroblastoma by Promoting Pericyte Recruitment. Cancer Res 64: 1675–1686, 2004

    PubMed  CAS  Google Scholar 

  84. Heissig B, Werb Z, Rafii S, Hattori K: Role of c-kit/Kit ligand signaling in regulating vasculogenesis. Thromb Haemost 90: 570–576, 2003

    PubMed  CAS  Google Scholar 

  85. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jimenez-Baranda S, Gomez-Mouton C, Martinez A, Manes S: Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117: 1847–1857, 2004

    PubMed  CAS  Google Scholar 

  86. Aalinkeel R, Nair MP, Sufrin G, Mahajan SD, Chadha KC, Chawda RP, Schwartz SA: Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 64: 5311–5321, 2004

    PubMed  CAS  Google Scholar 

  87. Mott JD, Werb Z: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16: 558–564, 2004

    PubMed  CAS  Google Scholar 

  88. Nyberg P, Xie L, Kalluri R: Endogenous inhibitors of angiogenesis. Cancer Res 65: 3967–3979, 2005

    PubMed  CAS  Google Scholar 

  89. Hamano Y, Kalluri R: Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333: 292–298, 2005

    PubMed  CAS  Google Scholar 

  90. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R: Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3: 589–601, 2003

    PubMed  CAS  Google Scholar 

  91. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J: Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486: 247–251, 2000

    PubMed  CAS  Google Scholar 

  92. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkila P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T: Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307: 292–304, 2005

    PubMed  CAS  Google Scholar 

  93. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA: Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A 97: 2202–2207, 2000

    PubMed  CAS  Google Scholar 

  94. Pozzi A, LeVine WF, Gardner HA: Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21: 272–281, 2002

    PubMed  CAS  Google Scholar 

  95. Rao BG: Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 11: 295–322, 2005

    PubMed  CAS  Google Scholar 

  96. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295: 2387–2392, 2002

    PubMed  CAS  Google Scholar 

  97. Overall CM, Lopez-Otin C: Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2: 657–672, 2002

    PubMed  CAS  Google Scholar 

  98. Molina JR, Reid JM, Erlichman C, Sloan JA, Furth A, Safgren SL, Lathia CD, Alberts SR: A phase I and pharmacokinetic study of the selective, non-peptidic inhibitor of matrix metalloproteinase BAY 12-9566 in combination with etoposide and carboplatin. Anticancer Drugs 16: 997–1002, 2005

    PubMed  CAS  Google Scholar 

  99. Ludwig T: Local proteolytic activity in tumor cell invasion and metastasis. Bioessays 27: 1181–1191, 2005

    PubMed  CAS  Google Scholar 

  100. Matter H, Schudok M: Recent advances in the design of matrix metalloprotease inhibitors. Curr Opin Drug Discov Devel 7: 513–535, 2004

    PubMed  CAS  Google Scholar 

  101. Brown S, Meroueh SO, Fridman R, Mobashery S: Quest for selectivity in inhibition of matrix metalloproteinases. Curr Top Med Chem 4: 1227–1238, 2004

    PubMed  CAS  Google Scholar 

  102. Mannello F, Tonti G, Papa S: Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets 5: 285–298, 2005

    PubMed  CAS  Google Scholar 

  103. Kruger A, Arlt MJ, Gerg M, Kopitz C, Bernardo MM, Chang M, Mobashery S, Fridman R: Antimetastatic activity of a novel mechanism-based gelatinase inhibitor. Cancer Res 65: 3523–3526, 2005

    PubMed  Google Scholar 

  104. Ikejiri M, Bernardo MM, Bonfil RD, Toth M, Chang M, Fridman R, Mobashery S: Potent mechanism-based inhibitors for matrix metalloproteinases. J Biol Chem 280: 33992–34002, 2005

    PubMed  CAS  Google Scholar 

  105. Skotnicki JS, DiGrandi MJ, Levin JI: Design strategies for the identification of MMP-13 and Tace inhibitors. Curr Opin Drug Discov Devel 6: 742–759, 2003

    PubMed  CAS  Google Scholar 

  106. Shinoda K, Shibuya M, Hibino S, Ono Y, Matsuda K, Takemura A, Zou D, Kokubo Y, Takechi A, Kudoh S: A novel matrix metalloproteinase inhibitor, FYK-1388 suppresses tumor growth, metastasis and angiogenesis by human fibrosarcoma cell line. Int J Oncol 22: 281–288, 2003

    PubMed  CAS  Google Scholar 

  107. Mendes O, Kim HT, Stoica G: Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22: 237–246, 2005

    PubMed  CAS  Google Scholar 

  108. Fujino H, Kondo K, Ishikura H, Maki H, Kinoshita H, Miyoshi T, Takahashi Y, Sawada N, Takizawa H, Nagao T, Sakiyama S, Monden Y: Matrix metalloproteinase inhibitor MMI-166 inhibits lymphogenous metastasis in an orthotopically implanted model of lung cancer. Mol Cancer Ther 4: 1409–1416, 2005

    PubMed  CAS  Google Scholar 

  109. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808–812, 1999

    PubMed  CAS  Google Scholar 

  110. Ogata Y, Matono K, Nakajima M, Sasatomi T, Mizobe T, Nagase H, Shirouzu K: Efficacy of the MMP inhibitor MMI270 against lung metastasis following removal of orthotopically transplanted human colon cancer in rat. Int J Cancer 118: 215–221, 2006

    PubMed  CAS  Google Scholar 

  111. Bonfil RD, Sabbota A, Nabha S, Bernardo MM, Dong Z, Meng H, Yamamoto H, Chinni SR, Lim IT, Chang M, Filetti LC, Mobashery S, Cher ML, Fridman R: Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. Int J Cancer, 2005

  112. Bremer C, Tung CH, Weissleder R: In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7: 743–748, 2001

    PubMed  CAS  Google Scholar 

  113. Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF: Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci USA 101: 10000–10005, 2004

    PubMed  CAS  Google Scholar 

  114. Kruger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V, Harbeck N, Gansbacher B, Schmitt M: Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61: 1272–1275, 2001

    PubMed  CAS  Google Scholar 

  115. Della PP, Soeltl R, Krell HW, Collins K, O'Donoghue M, Schmitt M, Kruger A: Combined treatment with serine protease inhibitor aprotinin and matrix metalloproteinase inhibitor Batimastat (BB-94) does not prevent invasion of human esophageal and ovarian carcinoma cells in vivo. Anticancer Res 19: 3809–3816, 1999

    Google Scholar 

  116. Stamenkovic I: Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10: 415–433, 2000

    PubMed  CAS  Google Scholar 

  117. Hojilla CV, Mohammed FF, Khokha R: Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89: 1817–1821, 2003

    PubMed  CAS  Google Scholar 

  118. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A Matrix Metalloproteinase Expressed on the Surface of Invasive Tumor-Cells. Nature 370: 61–65, 1994

    PubMed  CAS  Google Scholar 

  119. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI: Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338, 1995

    PubMed  CAS  Google Scholar 

  120. Brooks PC, Aimes RT, Sanders LC, von Schalscha TL, Stetler-Stevenson WG, Quigley JP, Cheresh DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85: 683–693, 1996

    PubMed  CAS  Google Scholar 

  121. Bourguignon LY, Gunja-Smith Z, Iida N, Zhu HB, Young LJ, Muller WJ, Cardiff RD: CD44v(3,8–10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176: 206–215, 1998

    PubMed  CAS  Google Scholar 

  122. Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000

    PubMed  Google Scholar 

  123. Fridman R, Toth M, Chvyrkova I, Meroueh SO, Mobashery S: Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22: 153–166, 2003

    PubMed  CAS  Google Scholar 

  124. Bjorklund M, Heikkila P, Koivunen E: Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J Biol Chem 279: 29589–29597, 2004

    PubMed  Google Scholar 

  125. Wang XQ, Sun P, Paller AS: Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Biol Chem 278: 25591–25599, 2003

    PubMed  CAS  Google Scholar 

  126. Yu WH, Woessner JF, McNeish JD, Stamenkovic I: CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes&Development 16: 307–323, 2002

    CAS  Google Scholar 

  127. Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Nemori R, Okada Y: Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85: 1489–1506, 2005

    PubMed  CAS  Google Scholar 

  128. Nakahara H, Howard L, Thompson EW, Sato H, Seiki M, Yeh Y, Chen WT: Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci U S A 94: 7959–7964, 1997

    PubMed  CAS  Google Scholar 

  129. Chen WT, Wang JY: Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N Y Acad Sci 878: 361–371, 1999

    PubMed  CAS  Google Scholar 

  130. Mori H, Tomari T, Koshikawa N, Kajita M, Itoh Y, Sato H, Tojo H, Yana I, Seiki M: CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J 21: 3949–3959, 2002

    PubMed  CAS  Google Scholar 

  131. Buccione R, Orth JD, McNiven MA: Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5: 647–657, 2004

    PubMed  CAS  Google Scholar 

  132. Stuelten CH, DaCosta BS, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB: Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118: 2143-2153, 2005

    PubMed  CAS  Google Scholar 

  133. Dong Z, Nemeth JA, Cher ML, Palmer KC, Bright RC, Fridman R: Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. Int J Cancer 93: 507–515, 2001

    PubMed  CAS  Google Scholar 

  134. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A: PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313, 2005

    PubMed  CAS  Google Scholar 

  135. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ: Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114: 33–45, 2003

    PubMed  CAS  Google Scholar 

  136. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, Allen E, Chung D, Weiss SJ: Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167: 769–781, 2004

    PubMed  CAS  Google Scholar 

  137. Itoh Y, Seiki M: MT1-MMP: A potent modifier of pericellular microenvironment. J Cell Physiol 206: 1–8, 2006

    PubMed  CAS  Google Scholar 

  138. Ha HY, Moon HB, Nam MS, Lee JW, Ryoo ZY, Lee TH, Lee KK, So BJ, Sato H, Seiki M, Yu DY: Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61: 984–990, 2001

    PubMed  CAS  Google Scholar 

  139. Deryugina EI, Soroceanu L, Strongin AY: Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res 62: 580–588, 2002

    PubMed  CAS  Google Scholar 

  140. Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R: Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol 12: 131–138, 2002

    PubMed  CAS  Google Scholar 

  141. Zhai Y, Hotary KB, Nan B, Bosch FX, Munoz N, Weiss SJ, Cho KR: Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res 65: 6543–6550, 2005

    PubMed  CAS  Google Scholar 

  142. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277, 2003

    PubMed  CAS  Google Scholar 

  143. Condeelis J, Segall JE: Intravital imaging of cell movement in tumours. Nat Rev Cancer 3: 921–930, 2003

    PubMed  CAS  Google Scholar 

  144. Condeelis J, Singer R, Segall JE: The Great Escape: When Cancer Cells Hijack the Genes for Chemotaxis and Motility. Annu Rev Cell Dev Biol 2005

  145. Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I: Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61: 577–581, 2001

    PubMed  CAS  Google Scholar 

  146. Meyer E, Vollmer JY, Bovey R, Stamenkovic I: Matrix metalloproteinases 9 and 10 inhibit protein kinase C-potentiated, p53-mediated apoptosis. Cancer Res 65: 4261–4272, 2005

    PubMed  CAS  Google Scholar 

  147. Abraham R, Schafer J, Rothe M, Bange J, Knyazev P, Ullrich A: Identification of MMP-15 as an anti-apoptotic factor in cancer cells. J Biol Chem 280: 34123–34132, 2005

    PubMed  CAS  Google Scholar 

  148. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64: 7022–7029, 2004

    PubMed  CAS  Google Scholar 

  149. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS: Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65: 5278–5283, 2005

    PubMed  CAS  Google Scholar 

  150. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D: Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64: 5378–5384, 2004

    PubMed  CAS  Google Scholar 

  151. Pepper MS: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104–1117, 2001

    PubMed  CAS  Google Scholar 

  152. Pepper MS, Tille JC, Nisato R, Skobe M: Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314: 167–177, 2003

    PubMed  CAS  Google Scholar 

  153. Wyckoff JB, Jones JG, Condeelis JS, Segall JE: A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60: 2504–2511, 2000

    PubMed  CAS  Google Scholar 

  154. Kim J, Yu W, Kovalski K, Ossowski L: Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94: 353–362, 1998

    PubMed  CAS  Google Scholar 

  155. Zijlstra A, Mellor R, Panazarella G, Aimes RT, Marchenko ND, Quigley JP: A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62: 7083–7092, 2002

    PubMed  CAS  Google Scholar 

  156. Deryugina EI, Zijlstra A, Partridge J, Kupriyanova T, Madsen MA, Papagiannakopoulos T, Quigley JP: Unexpected effect of matrix metalloproteinase downregulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65: 10959–10969, 2005

    PubMed  CAS  Google Scholar 

  157. Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, Zhang ZY, Sahai E, Condeelis J, Segall JE: Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66: 192–197, 2006

    PubMed  CAS  Google Scholar 

  158. Amoh Y, Li L, Yang M, Jiang P, Moossa AR, Katsuoka K, Hoffman RM: Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin. Cancer Res 65: 2337–2343, 2005

    PubMed  CAS  Google Scholar 

  159. Mira E, Lacalle RA, Gomez-Mouton C, Leonardo E, Manes S: Quantitative determination of tumor cell intravasation in a real-time polymerase chain reaction-based assay. Clin Exp Metastasis 19: 313–318, 2002

    PubMed  CAS  Google Scholar 

  160. van der Horst EH, Leupold JH, Schubbert R, Ullrich A, Allgayer H: TaqMan-based quantification of invasive cells in the chick embryo metastasis assay. Biotechniques 37: 940–2, 944, 946, 2004

    PubMed  Google Scholar 

  161. Nyberg P, Heikkila P, Sorsa T, Luostarinen J, Heljasvaara R, Stenman UH, Pihlajaniemi T, Salo T: Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and -13. J Biol Chem 278: 22404–22411, 2003

    PubMed  CAS  Google Scholar 

  162. Lugassy C, Kleinman HK, Engbring JA, Welch DR, Harms JF, Rufner R, Ghanem G, Patierno SR, Barnhill RL: Pericyte-like location of GFP-tagged melanoma cells: ex vivo and in vivo studies of extravascular migratory metastasis. Am J Pathol 164: 1191–1198, 2004

    PubMed  Google Scholar 

  163. Cretu A, Fotos JS, Little BW, Galileo DS: Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis 22: 225–236, 2005

    PubMed  Google Scholar 

  164. Yamauchi K, Yang M, Jiang P, Yamamoto N, Xu M, Amoh Y, Tsuji K, Bouvet M, Tsuchiya H, Tomita K, Moossa AR, Hoffman RM: Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65: 4246–4252, 2005

    PubMed  CAS  Google Scholar 

  165. Tsuji K, Yamauchi K, Yang M, Jiang P, Bouvet M, Endo H, Kanai Y, Yamashita K, Moossa AR, Hoffman RM: Dual-color imaging of nuclear-cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res 66: 303–306, 2006

    PubMed  CAS  Google Scholar 

  166. Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH: A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61: 237–242, 2001

    PubMed  CAS  Google Scholar 

  167. Kataoka H, Uchino H, Iwamura T, Seiki M, Nabeshima K, Koono M: Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of alpha1-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. Am J Pathol 154: 457–468, 1999

    PubMed  CAS  Google Scholar 

  168. Liotta LA, Kleinerman J, Saidel GM: Significance of Hematogenous Tumor-Cell Clumps in Metastatic Process. Cancer Res 36: 889–894, 1976

    PubMed  CAS  Google Scholar 

  169. Sugino T, Yamaguchi T, Ogura G, Saito A, Hashimoto T, Hoshi N, Yoshida S, Goodison S, Suzuki T: Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med 2: 9–16, 2004

    PubMed  Google Scholar 

  170. Yui S, Tomita K, Kudo T, Ando S, Yamazaki M: Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Sci 96: 560–570, 2005

    PubMed  CAS  Google Scholar 

  171. Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, Sekimata M, Homma Y, Suzuki T: An invasion-independent pathway of blood-borne metastasis: A new murine mammary tumor model. Am J Pathol 160: 1973–1980, 2002

    PubMed  CAS  Google Scholar 

  172. Jurasz P, Alonso-Escolano D, Radomski MW: Platelet–cancer interactions: Mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol 143: 819–826, 2004

    PubMed  CAS  Google Scholar 

  173. Nash GF, Turner LF, Scully MF, Kakkar AK: Platelets and cancer. Lancet Oncol 3: 425–430, 2002

    PubMed  CAS  Google Scholar 

  174. Alonso-Escolano D, Strongin AY, Chung AW, Deryugina EI, Radomski MW: Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: Role of receptor glycoproteins. Br J Pharmacol 141: 241–252, 2004

    PubMed  CAS  Google Scholar 

  175. Gassmann P, Enns A, Haier J: Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie 27: 577–582, 2004

    PubMed  CAS  Google Scholar 

  176. Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer 2: 91–100, 2002

    PubMed  Google Scholar 

  177. Mook OR, Van Marle J, Vreeling-Sindelarova H, Jonges R, Frederiks WM, Van Noorden CJ: Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38: 295–304, 2003

    PubMed  Google Scholar 

  178. Al Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ: Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6: 100–102, 2000

    Google Scholar 

  179. Voura EB, Jaiswal JK, Mattoussi H, Simon SM: Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10: 993–998, 2004

    PubMed  CAS  Google Scholar 

  180. Weis S, Cui J, Barnes L, Cheresh D: Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167: 223–229, 2004

    PubMed  CAS  Google Scholar 

  181. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169: 681–691, 2005

    PubMed  CAS  Google Scholar 

  182. Tsunezuka Y, Kinoh H, Takino T, Watanabe Y, Okada Y, Shinagawa A, Sato H, Seiki M: Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 56: 5678–5683, 1996

    PubMed  CAS  Google Scholar 

  183. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC: Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55: 2520–2523, 1995

    PubMed  CAS  Google Scholar 

  184. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC: Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: 865–873, 1998

    PubMed  CAS  Google Scholar 

  185. Wylie S, MacDonald IC, Varghese HJ, Schmidt EE, Morris VL, Groom AC, Chambers AF: The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin Exp Metastasis 17: 111–117, 1999

    PubMed  CAS  Google Scholar 

  186. Cockett MI, Murphy G, Birch ML, O'Connell JP, Crabbe T, Millican AT, Hart IR, Docherty AJ: Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 63: 295–313, 1998

    PubMed  CAS  Google Scholar 

  187. Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP: Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280: C814–C822, 2001

    PubMed  CAS  Google Scholar 

  188. Mackarel AJ, Cottell DC, Russell KJ, FitzGerald MX, O'Connor CM: Migration of neutrophils across human pulmonary endothelial cells is not blocked by matrix metalloproteinase or serine protease inhibitors. Am J Respir Cell Mol Biol 20: 1209–1219, 1999

    PubMed  CAS  Google Scholar 

  189. Allport JR, Lim YC, Shipley JM, Senior RM, Shapiro SD, Matsuyoshi N, Vestweber D, Luscinskas FW: Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J Leukoc Biol 71: 821–828, 2002

    PubMed  CAS  Google Scholar 

  190. Keck T, Balcom JIV, Fernandez-Del Castillo C, Antoniu BA, Warshaw AL: Matrix metalloproteinase-9 promotes neutrophil migration and alveolar capillary leakage in pancreatitis-associated lung injury in the rat. Gastroenterology 122: 188–201, 2002

    PubMed  CAS  Google Scholar 

  191. Vande B, I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van R, I: Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18: 976–982, 2004

  192. Sternlicht MD, Bissell MJ, Werb Z: The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19: 1102–1113, 2000

    PubMed  CAS  Google Scholar 

  193. D'Armiento J, DiColandrea T, Dalal SS, Okada Y, Huang MT, Conney AH, Chada K: Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol 15: 5732–5739, 1995

    PubMed  Google Scholar 

  194. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–146, 1999

    PubMed  CAS  Google Scholar 

  195. Chen X, Su Y, Fingleton B, Acuff H, Matrisian LM, Zent R, Pozzi A: An orthotopic model of lung cancer to analyze primary and metastatic NSCLC growth in integrin alpha1-null mice. Clin Exp Metastasis 22: 185–193, 2005

    PubMed  Google Scholar 

  196. Soulie P, Carrozzino F, Pepper MS, Strongin AY, Poupon MF, Montesano R: Membrane-type-1 matrix metalloproteinase confers tumorigenicity on nonmalignant epithelial cells. Oncogene 24: 1689–1697, 2005

    PubMed  CAS  Google Scholar 

  197. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K: Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 45: 252–258, 1999

    Article  PubMed  CAS  Google Scholar 

  198. Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW, Williams ED: Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 22: 115–125, 2005

    PubMed  CAS  Google Scholar 

  199. Yonemura Y, Endo Y, Fujita H, Kimura K, Sugiyama K, Momiyama N, Shimada H, Sasaki T: Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J Exp Clin Cancer Res 20: 205–212, 2001

    PubMed  CAS  Google Scholar 

  200. Takahashi M, Fukami S, Iwata N, Inoue K, Itohara S, Itoh H, Haraoka J, Saido T: In vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol Res 46: 155–163, 2002

    PubMed  CAS  Google Scholar 

  201. Kato T, Kure T, Chang JH, Gabison EE, Itoh T, Itohara S, Azar DT: Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett 508: 187–190, 2001

    PubMed  CAS  Google Scholar 

  202. Ohno-Matsui K, Uetama T, Yoshida T, Hayano M, Itoh T, Morita I, Mochizuki M: Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci 44: 5370–5375, 2003

    PubMed  Google Scholar 

  203. Berglin L, Sarman S, van dP, I, Steen B, Ming Y, Itohara S, Seregard S, Kvanta A: Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci 44: 403–408, 2003

    Google Scholar 

  204. Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM: Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66: 259–266, 2006

    PubMed  CAS  Google Scholar 

  205. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M: Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis 17: 177–181, 1999

    CAS  Google Scholar 

  206. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Steven D, Shapiro SD: Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J Immunol 161: 6845–6852, 1998

    PubMed  CAS  Google Scholar 

  207. Basset P, Bellocq JP, Lefebvre O, Noel A, Chenard MP, Wolf C, Anglard P, Rio MC: Stromelysin-3: A paradigm for stroma-derived factors implicated in carcinoma progression. Crit Rev Oncol Hematol 26: 43–53, 1997

    PubMed  CAS  Google Scholar 

  208. Masson R, Lefebvre O, Noel A, Fahime ME, Chenard MP, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart JM, Basset P, Rio MC: In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140: 1535–1541, 1998

    PubMed  CAS  Google Scholar 

  209. Boulay A, Masson R, Chenard MP, El Fahime M, Cassard L, Bellocq JP, Sautes-Fridman C, Basset P, Rio MC: High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61: 2189–2193, 2001

    PubMed  CAS  Google Scholar 

  210. Wu E, Mari BP, Wang F, Anderson IC, Sunday ME, Shipp MA: Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem 82: 549–555, 2001

    PubMed  CAS  Google Scholar 

  211. Andarawewa KL, Boulay A, Masson R, Mathelin C, Stoll I, Tomasetto C, Chenard MP, Gintz M, Bellocq JP, Rio MC: Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 63: 5844–5849, 2003

    PubMed  CAS  Google Scholar 

  212. Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM: Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A 94: 1402–1407, 1997

    PubMed  CAS  Google Scholar 

  213. Nishizuka I, Ichikawa Y, Ishikawa T, Kamiyama M, Hasegawa S, Momiyama N, Miyazaki K, Shimada H: Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and induces angiogenesis in vivo. Cancer Lett 173: 175–182, 2001

    PubMed  CAS  Google Scholar 

  214. Kure T, Chang JH, Kato T, Hernandez-Quintela E, Ye H, Lu PC, Matrisian LM, Gatinel D, Shapiro S, Gosheh F, Azar DT: Corneal neovascularization after excimer keratectomy wounds in matrilysin-deficient mice. Invest Ophthalmol Vis Sci 44: 137–144, 2003

    PubMed  Google Scholar 

  215. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y: Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231: 20–27, 2006

    CAS  Google Scholar 

  216. Sanceau J, Truchet S, Bauvois B: Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells. J Biol Chem 278: 36537–36546, 2003

    PubMed  CAS  Google Scholar 

  217. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR: A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 10: 823–832, 2003

    PubMed  CAS  Google Scholar 

  218. Lakka SS, Rajan M, Gondi C, Yanamandra N, Chandrasekar N, Jasti SL, Adachi Y, Siddique K, Gujrati M, Olivero W, Dinh DH, Kouraklis G, Kyritsis AP, Rao JS: Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene 21: 8011–8019, 2002

    PubMed  CAS  Google Scholar 

  219. Hua J, Muschel RJ: Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 56: 5279–5284, 1996

    PubMed  CAS  Google Scholar 

  220. Lakka SS, Gondi CS, Dinh DH, Olivero WC, Gujrati M, Rao VH, Sioka C, Rao JS: Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280: 21882–21892, 2005

    PubMed  CAS  Google Scholar 

  221. Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS: Synergistic Down-Regulation of Urokinase Plasminogen Activator Receptor and Matrix Metalloproteinase-9 in SNB19 Glioblastoma Cells Efficiently Inhibits Glioma Cell Invasion, Angiogenesis, and Tumor Growth. Cancer Res 63: 2454, 2003

    PubMed  CAS  Google Scholar 

  222. Rao JS, Gondi C, Chetty C, Chittivelu S, Joseph PA, Lakka SS: Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther 4: 1399–1408, 2005

    PubMed  CAS  Google Scholar 

  223. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA: Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A 97: 3884–3889, 2000

    PubMed  CAS  Google Scholar 

  224. Miyazaki K, Koshikawa N, Hasegawa S, Momiyama N, Nagashima Y, Moriyama K, Ichikawa Y, Ishikawa T, Mitsuhashi M, Shimada H: Matrilysin as a target for chemotherapy for colon cancer: use of antisense oligonucleotides as antimetastatic agents. Cancer Chemother Pharmacol 43 Suppl: S52–S55, 1999

    PubMed  CAS  Google Scholar 

  225. Ala-aho R, Ahonen M, George SJ, Heikkila J, Grenman R, Kallajoki M, Kahari VM: Targeted inhibition of human collagenase-3 (MMP-13) expression inhibits squamous cell carcinoma growth in vivo. Oncogene 23: 5111–5123, 2004

    PubMed  CAS  Google Scholar 

  226. Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K, Tarin D: Altered Metastatic Behavior of Human Breast Cancer Cells after Experimental Manipulation of Matrix Metalloproteinase 8 Gene Expression. Cancer Res 64: 1687–1694, 2004

    PubMed  CAS  Google Scholar 

  227. Wyatt CA, Geoghegan JC, Brinckerhoff CE: Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: Effects on matrix destruction and tumor growth. Cancer Res 65: 11101–11108, 2005

    PubMed  CAS  Google Scholar 

  228. Kawamata H, Kameyama S, Kawai K, Tanaka Y, Nan L, Barch DH, Stetler-Stevenson WG, Oyasu R: Marked acceleration of the metastatic phenotype of a rat bladder carcinoma cell line by the expression of human gelatinase A. Int J Cancer 63: 568–575, 1995

    PubMed  CAS  Google Scholar 

  229. Van Themsche C, Patworski EF, St-Pierre Y: Stromelysin-1 (MMP-3) is inducible in T lymphoma cells and accelerates the growth of lymphoid tumors in vivo. Biochem Biophys Res Commun 315: 884–891, 2004

    PubMed  Google Scholar 

  230. Aoudjit F, Masure S, Opdenakker G, Potworski EF, St-Pierre Y: Gelatinaser B (MMP-9), but not its inhibitor (TIMP-1), dictates the growth rate of experimental thymic lymphoma. Int J Cancer 82: 743–747, 1999

    PubMed  CAS  Google Scholar 

  231. Sehgal G, Hua J, Bernhard EJ, Sehgal I, Thompson TC, Muschal RJ: Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am J Pathol 152: 591–596, 1998

    PubMed  CAS  Google Scholar 

  232. Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL, Nirmala C, Lakka SS, Adachi Y, Kyritsis AP, Ali-Osman F, Sawaya R, Fuller GN, Rao JS: Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invaion. Cancer Res 60: 6851–6855, 2000

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Quigley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deryugina, E.I., Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25, 9–34 (2006). https://doi.org/10.1007/s10555-006-7886-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-7886-9

Keywords

Navigation