Skip to main content

Advertisement

Log in

Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that specific miRNAs, such as miR-221/222, may be responsible for tamoxifen resistance in breast cancer. Secreted miRNAs enclosed in exosomes can act as intercellular bio-messengers. Our objective is to investigate the role of secreted miR-221/222 in tamoxifen resistance of ER-positive breast cancer cells. Transmission electron microscopy analysis and nanoparticle tracking analysis were performed to determine the exosomes difference between MCF-7TamR (tamoxifen resistant) and MCF-7wt (tamoxifen sensitive) cells. PKH67 fluorescent labeling assay was used to detect exosomes derived from MCF-7TamR cells entering into MCF-7wt cells. The potential function of exosomes on tamoxifen resistance transmission was analyzed with cell viability, apoptosis ,and colony formation. MiRNA microarrays and qPCR were used to detect and compare the miRNAs expression levels in the two cells and exosomes. As the targets of miR-221/222, p27 and ERα were analyzed with western blot and qPCR. Compared with the MCF-7wt exosomes, there were significant differences in the concentration and size distribution of MCF-7TamR exosomes. MCF-7wt cells had an increased amount of exosomal RNA and proteins compared with MCF-7TamR cells. MCF-7TamR exosomes could enter into MCF-7wt cells, and then released miR-221/222. And the elevated miR-221/222 effectively reduced the target genes expression of P27 and ERα, which enhanced tamoxifen resistance in recipient cells. Our results are the first to show that secreted miR-221/222 serves as signaling molecules to mediate communication of tamoxifen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MCF-7TamR :

Tamoxifen-resistant MCF-7

MCF-7wt :

Tamoxifen-sensitive MCF-7

TAM:

Tumor-associated macrophage

ERα:

Estrogen receptor α

References

  1. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ (2002) Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2:37

    Article  PubMed Central  PubMed  Google Scholar 

  2. Katzenellenbogen BS, Miller MA, Mullick A, Sheen YY (1985) Antiestrogen action in breast cancer cells: modulation of proliferation and protein synthesis, and interaction with estrogen receptors and additional antiestrogen binding sites. Breast Cancer Res Treat 5(3):231–243

    Article  CAS  PubMed  Google Scholar 

  3. Osborne CK, Schiff R (2003) Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast 12(6):362–367

    Article  PubMed  Google Scholar 

  4. Yun J, Pannuti A, Espinoza I, Zhu H, Hicks C, Zhu X, Caskey M, Rizzo P, D’Souza G, Backus K et al (2013) Crosstalk between PKCalpha and Notch-4 in endocrine-resistant breast cancer cells. Oncogenesis 2:e60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Osborne CK, Fuqua SA (1994) Mechanisms of tamoxifen resistance. Breast Cancer Res Treat 32(1):49–55

    Article  CAS  PubMed  Google Scholar 

  6. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, Roche H, Dalenc F, Auboeuf D, Millevoi S et al (2009) Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res 69(21):8332–8340

    Article  CAS  PubMed  Google Scholar 

  8. Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, Jones FE (2010) Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 9:317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Majumder S, Jacob ST (2011) Emerging role of microRNAs in drug-resistant breast cancer. Gene Exp 15(3):141–151

    Article  Google Scholar 

  10. Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 8(4):e62334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  12. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    Article  PubMed  Google Scholar 

  13. Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1(1):7

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661

    Article  CAS  PubMed  Google Scholar 

  15. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  17. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330

    Article  CAS  PubMed  Google Scholar 

  19. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Murray MJ, Bailey S, Raby KL, Saini HK, de Kock L, Burke GA, Foulkes WD, Enright AJ, Coleman N, Tischkowitz M (2014) Serum levels of mature microRNAs in DICER1-mutated pleuropulmonary blastoma. Oncogenesis 3:e87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Wurdinger T et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006, S3991–3915

  23. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  24. Chiba M, Kimura M, Asari S (2012) Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep 28(5):1551–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  CAS  PubMed  Google Scholar 

  26. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12(1):27–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 32(22):2747–2755

    Article  CAS  PubMed  Google Scholar 

  29. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159

    Article  CAS  PubMed  Google Scholar 

  30. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N et al (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 108(3):644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, Schmitt A, Schneider A, Cabral H, Cagsal-Getkin O et al (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8(1):e48814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28(10):1721–1726

    Article  PubMed  Google Scholar 

  34. Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128(3):608–616

    Article  CAS  PubMed  Google Scholar 

  35. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Thery C (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72(19):4920–4930

    Article  CAS  PubMed  Google Scholar 

  36. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30; sup 11–13

  37. van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. doi:10.1111/jth.12602

    PubMed  Google Scholar 

  38. Ekstrom EJ, Bergenfelz C, von Bulow V, Serifler F, Carlemalm E, Jonsson G, Andersson T, Leandersson K (2014) WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer 13(1):88

    Article  PubMed Central  PubMed  Google Scholar 

  39. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X et al (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58(11):2498–2505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 13:421

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lee HD, Koo BH, Kim YH, Jeon OH, Kim DS (2012) Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J 26(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shuai Zhang for his excellent technical support of nanoparticle tracking analysis. This study was supported by National Natural Science Foundation of China (Nos. 81202091, 81372390 and 81102006).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libo Yao or Jian Zhang.

Additional information

Yifang Wei and Xiaofeng Lai contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2014_3037_MOESM1_ESM.tif

Fig. S1 Quantification of mean diameters of the exosomes isolated from MCF-7wt and MCF-7TamR cells. Diameters of exosomes were manually measured in each of five random microscopic fields (TIFF 2071 kb)

Fig. S2 Quantification of particles were analyzed by nanoparticle tracking analysis (NTA) (TIFF 422 kb)

10549_2014_3037_MOESM3_ESM.tif

Fig. S3 T47DTamR exosomes deliver miR-221/222 into recipient T47Dwt cells (a) Relative expression of miR-221/222 between T47Dwt and T47DTamR exosomes. (b) Relative expression of miR-221/222 in T47Dwt cells treated with T47Dwt or T47DTamR exosomes respectively (TIFF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Lai, X., Yu, S. et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 147, 423–431 (2014). https://doi.org/10.1007/s10549-014-3037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3037-0

Keywords

Navigation