Skip to main content

Advertisement

Log in

Early changes in [18F]FDG incorporation by breast cancer cells treated with trastuzumab in normoxic conditions: role of the Akt-pathway, glucose transport and HIF-1α

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

HER-2 overexpression does not guarantee response to HER2-targeting drugs such as trastuzumab, which is cardiotoxic and expensive, so early detection of response status is crucial. Factors influencing [18F]FDG incorporation in the timeframe of cell signalling down-regulation subsequent to trastuzumab treatment are investigated to provide a better understanding of the relationship between growth response and modulation of [18F]FDG incorporation. HER-2-overexpressing breast tumour cell lines, MDA-MB-453, SKBr3 and BT474 and MDA-MB-468 (HER2 non-over-expressor) were treated with trastuzumab (4 h) and probed for AKT, pAKT, ERK1/2, pERK1/2 and HIF-1α to determine early signalling pathway inhibitory effects of trastuzumab. Cells incubated with trastuzumab and/or PI3K inhibitor LY294002 and ERK1/2 inhibitor U0126 and glucose transport and [18F]FDG incorporation measured. Cell lines expressed AKT, pAKT, ERK1/2 and pERK1/2 but not HIF-1α. Trastuzumab treatment decreased pAkt but not pERK1/2 levels. Trastuzumab did not further inhibit AKT when maximally inhibited with LY294002. Treatment with LY294002 and trastuzumab for 4 h decreased [18F]FDG incorporation in BT474 and MDA-MB-453 but not SKBr3 cells. LY294002 inhibited glucose transport by each cell line, but the glucose transport rate was tenfold higher by SKBr3 cells than BT474 and MDA-MB-453 cells. AKT-induced uptake of [18F]FDG was found to be HIF-1α independent in breast cancer cell lines. AKT inhibition level and tumour cell glucose transport rate can influence whether or not PI3K inhibitors affect [18F]FDG incorporation which may account for the variation in preclinical and clinical findings associated with [18F]FDG-PET in response to trastuzumab and other HER-2 targeting drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. www.cancer.org/cancer/breastcancer/overviewguide/breast-cancer-overview-key-statistics. Accessed 15 Dec 2013

  2. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signalling pathway in cancer. Curr Opin Genet Dev 20:87–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1:8

    Article  Google Scholar 

  5. Smith BL, Chin D, Maltzman W, Crosby K, Hortobagyi GN, Bacus SS (2004) The efficacy of Herceptin therapies is influenced by the expression of other erbB receptors, their ligands and the activation of downstream signalling proteins. Br J Cancer 91:1190–1194

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Nahta R, Esteva FJ (2006) HER2 therapy—molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8:215

    Article  PubMed Central  PubMed  Google Scholar 

  7. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Eng J Med 344:783–792

    Article  CAS  Google Scholar 

  8. Evangelista L, Rubello D, Saladini G (2012) Can FDG PET/CT monitor the response to hormonal therapy in breast cancer patients? Eur J Nucl Med Mol Imaging 39:446–449

    Article  PubMed  Google Scholar 

  9. Maynard J, Ricketts SA, Gendrin C, Dudley P, Davies BR (2013) 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography demonstrates target inhibition with the potential to predict anti-tumour activity following treatment with the AKT inhibitor AZD5363. Mol Imaging Biol 15:476–485

    Article  PubMed  Google Scholar 

  10. Kelly CJ, Hussien K, Muschel RJ (2012) 3D tumour spheroids as a model to assess the suitability of [18F]FDG-PET as an early indicator of response to PI3K inhibition. Nucl Med Biol 39:986–992

    Article  CAS  PubMed  Google Scholar 

  11. Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ (2008) Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia 10:745–756

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Shah C, Miller TW, Wyatt SK et al (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15:4712–4719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Janjigian YY, Viola-Villegas N, Holland JP et al (2013) Monitoring afatinib treatment in HER2-positive gastric cancer with F-18-FDG and Zr-89-trastuzumab PET. J Nucl Med 54:936–943

    Article  CAS  PubMed  Google Scholar 

  14. Flores LG, Yeh HH, Soghomonyan S et al (2013) Monitoring therapy with MEK inhibitor U0126 in a novel wilms tumor model in Wt1 knockout Igf2 transgenic mice using F-18-FDG PET with dual-contrast enhanced CT and MRI: early metabolic response without inhibition of tumor growth. Mol Imaging Biol 15:175–185

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cheyne RW, Trembleau L, McLaughlin AC, Smith TAD (2011) Changes in 2-fluoro-2-deoxy-d-glucose incorporation, hexokinase activity and lactate production by breast cancer cells responding to treatment with the anti-HER-2 antibody trastuzumab. Nucl Med Biol 38:339–346

    Article  CAS  PubMed  Google Scholar 

  16. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M (2007) Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 5:195–201

    Article  CAS  PubMed  Google Scholar 

  17. Smith TAD, Zanda M, Fleming IN (2013) Hypoxia stimulates 18F-fluorodeoxyglucose uptake in breast cancer cells via hypoxia induced factors-1 and AMP-activated protein kinase. Nucl Med Biol 40:858–864

    Article  CAS  PubMed  Google Scholar 

  18. Rusnak DW, Alligood KJ, Mullin RJ et al (2007) Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) proteins expression levels and response to lapatinab (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines. Cell Prolif 40:580–594

    Article  CAS  PubMed  Google Scholar 

  19. Powis G, Ihle N, Kirkpatrick DL (2006) Practicalities of drugging the phosphatidylinositol-3-kinase/Akt cell survival signaling pathway. Clin Cancer Res 12:2964–2966

    Article  CAS  PubMed  Google Scholar 

  20. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lambert CM, Roy M, Robitaille GA, Richard DE, Bonnet S (2010) HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cell Prolif 88:196–204

    CAS  Google Scholar 

  22. Fan YJ, Dickman KG, Zong WX (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285:7324–7333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  CAS  PubMed  Google Scholar 

  24. Garrett JT, Sutton CR, Kuba MG, Cook RS, Arteaga CL (2013) Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function. Clin Cancer Res 19:610–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Normanno N, Campiglio M, De Luca A et al (2002) Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol 13:65–72

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen QD, Perumal M, Waldman TA, Aboagye EO (2011) Glucose metabolism measured by [F-18]fluorodeoxyglucose positron emission tomography is independent of PTEN/AKT status in human colon carcinoma cells. Transl Oncol 4:231–238

    Google Scholar 

  27. Chan CH, Li CF, Yang WL et al (2012) The Skp2-SCF E3 ligase regulates akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149:1098–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Palaskas N, Larson SM, Schultz N et al (2011) F-18-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res 71:5164–5174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kawada K, Murakami K, Sato T et al (2007) Prospective study of positron emission tomography for evaluation of the activity of lapatinib, a dual inhibitor of the ErbB1 and ErbB2 tyrosine kinases, in patients with advanced tumors. Jpn J Clin Oncol 37:44–48

    Article  PubMed  Google Scholar 

  32. McLarty K, Fasih A, Scollard DA et al (2009) F-18-FDG small-animal PET/CT differentiates trastuzumab-responsive from unresponsive human breast cancer xenografts in athymic mice. J Nucl Med 50:1848–1856

    Article  CAS  PubMed  Google Scholar 

  33. Smith TAD, Appleyard MVCL, Sharp S, Fleming IN, Murray K, Thompson AM (2013) Response to trastuzumab by HER2 expressing breast tumour xenografts is accompanied by decreased Hexokinase II, glut1 and [F-18]-FDG incorporation and changes in P-31-NMR-detectable phosphomonoesters. Cancer Chemother Pharmacol 71:473–480

    Article  CAS  PubMed  Google Scholar 

  34. Davies BR, Greenwood H, Dudley P et al (2012) Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther 11:873–887

    Article  CAS  PubMed  Google Scholar 

  35. Zundel W, Schindler C, Haas K et al (2000) Loss of PTED facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia inducible factor-1 alpha expression by the epidermal growth factor/phosphatidylinositol-3-kinase/PTEN/FRAP pathway in human prostate cancer cells; implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    CAS  PubMed  Google Scholar 

  37. Burrows N, Babur M, Resch J et al (2011) GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by Targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1 alpha (HIF-1 alpha) pathways. J Clin Endocrinol Metab 96:E1934–E1943

    Article  CAS  PubMed  Google Scholar 

  38. Majumder PK, Febbo PG, Bikoff R et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594–601

    Article  CAS  PubMed  Google Scholar 

  39. Bhaskar PT, Nogueira V, Patra KC, Jeon SM, Park Y, Robey RB, Hay N (2009) mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3 beta inhibition. Mol Cell Biol 29:5136–5147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jones A, Fujiyama C, Blanche C et al (2001) Relationship of vascular endothelial growth factor production to expression and regulation of hypoxia-inducible factor-1 α and hypoxia-inducible factor-2 α in human bladder tumors and cell line. Clin Cancer Res 7:1263–1272

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was funded by the University of Aberdeen and Friends of Anchor. We thank Dr Iain Brown, University of Aberdeen, for the generous gift of the anti-pHER2 antibody

Disclosure

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim A. D. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, I.N., Andriu, A. & Smith, T.A.D. Early changes in [18F]FDG incorporation by breast cancer cells treated with trastuzumab in normoxic conditions: role of the Akt-pathway, glucose transport and HIF-1α. Breast Cancer Res Treat 144, 241–248 (2014). https://doi.org/10.1007/s10549-014-2858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2858-1

Keywords

Navigation