Skip to main content

Advertisement

Log in

A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The treatment of patients with invasive breast cancer remains a major issue because of the acquisition of drug resistance to conventional chemotherapy. Here we propose a new therapeutic strategy by combining DNA methyltransferase inhibitors (DMTIs) with suramin. Cytotoxic effects of suramin or combination treatment with DMTIs were determined in highly invasive breast cancer cell lines MDA-MB-231, BT-20 and HCC1954, or control cells. In addition, effects on cell invasion were determined in 3-dimensional cell culture assays. DMTI-mediated upregulation of Protein Kinase D1 (PKD1) expression was shown by Western blotting. Effects of suramin on PKD1 activity was determined in vitro and in cells. The importance of PKD1 in mediating the effects of such combination treatment in cell invasion was demonstrated using 3D cell culture assays. A proof of principal animal experiment was performed showing that PKD1 is critical for breast cancer growth. We show that when used in combination, suramin and DMTIs impair the invasive phenotype of breast cancer cells. We show that PKD1, a kinase that previously has been described as a suppressor of tumor cell invasion, is an interface for both FDA-approved drugs, since the additive effects observed are due to DMTI-mediated re-expression and suramin-induced activation of PKD1. Our data reveal a mechanism of how a combination treatment with non-toxic doses of suramin and DMTIs may be of therapeutic benefit for patients with aggressive, multi-drug resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

DMTI:

DNA methyltransferase inhibitor

EMT:

Epithelial-to-mesenchymal transition

FFPE:

Formalin-fixed paraffin-embedded

GF:

Growth factor

IHC:

Immunohistochemistry

Mfp:

Mammary fat pad

MMP:

Matrix metalloproteinase

PKC:

Protein kinase C

PKD:

Protein kinase D

RT:

Room temperature

TN:

Triple negative

References

  1. Karahoca M, Momparler RL (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenet 5:3

    Article  CAS  Google Scholar 

  2. Singh V, Sharma P, Capalash N (2013) DNA methyltransferase inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets 13:379–399

    Article  CAS  PubMed  Google Scholar 

  3. Karpf AR, Moore BC, Ririe TO, Jones DA (2001) Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol 59:751–757

    CAS  PubMed  Google Scholar 

  4. Eiseler T, Doppler H, Yan IK, Goodison S, Storz P (2009) Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res 11:R13

    Article  PubMed Central  PubMed  Google Scholar 

  5. Borges S, Doppler H, Perez EA, Andorfer CA, Sun Z et al (2013) Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res 15:R66

    Article  PubMed  Google Scholar 

  6. Chopin DK, Caruelle JP, Colombel M, Palcy S, Ravery V et al (1993) Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J Urol 150:1126–1130

    CAS  PubMed  Google Scholar 

  7. Cronauer MV, Hittmair A, Eder IE, Hobisch A, Culig Z et al (1997) Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate 31:223–233

    Article  CAS  PubMed  Google Scholar 

  8. Ravery V, Jouanneau J, Gil Diez S, Abbou CC, Caruelle JP et al (1992) Immunohistochemical detection of acidic fibroblast growth factor in bladder transitional cell carcinoma. Urol Res 20:211–214

    Article  CAS  PubMed  Google Scholar 

  9. Ropiquet F, Giri D, Kwabi-Addo B, Mansukhani A, Ittmann M (2000) Increased expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Res 60:4245–4250

    CAS  PubMed  Google Scholar 

  10. Singh RK, Bucana CD, Gutman M, Fan D, Wilson MR et al (1994) Organ site-dependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. Am J Pathol 145:365–374

    CAS  PubMed  Google Scholar 

  11. Suzuki K, Tokue A, Kamiakito T, Kuriki K, Saito K et al (2001) Predominant expression of fibroblast growth factor (FGF) 8, FGF4, and FGF receptor 1 in nonseminomatous and highly proliferative components of testicular germ cell tumors. Virchows Arch 439:616–621

    CAS  PubMed  Google Scholar 

  12. Bernsen HJ, Rijken PF, Peters JP, Bakker JH, Boerman RH et al (1999) Suramin treatment of human glioma xenografts; effects on tumor vasculature and oxygenation status. J Neurooncol 44:129–136

    Article  CAS  PubMed  Google Scholar 

  13. Bhargava S, Hotz B, Hines OJ, Reber HA, Buhr HJ et al (2007) Suramin inhibits not only tumor growth and metastasis but also angiogenesis in experimental pancreatic cancer. J Gastrointest Surg 11:171–178

    Article  PubMed  Google Scholar 

  14. Danesi R, Del Bianchi S, Soldani P, Campagni A, La Rocca RV et al (1993) Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br J Cancer 68:932–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hawking F (1978) Suramin: with special reference to onchocerciasis. Adv Pharmacol Chemother 15:289–322

    Article  CAS  PubMed  Google Scholar 

  16. Coffey RJ Jr, Goustin AS, Soderquist AM, Shipley GD, Wolfshohl J et al (1987) Transforming growth factor alpha and beta expression in human colon cancer lines: implications for an autocrine model. Cancer Res 47:4590–4594

    CAS  PubMed  Google Scholar 

  17. Hosang M (1985) Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 29:265–273

    Article  CAS  PubMed  Google Scholar 

  18. Pollak M, Richard M (1990) Suramin blockade of insulinlike growth factor I-stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–1352

    Article  CAS  PubMed  Google Scholar 

  19. Williams LT, Tremble PM, Lavin MF, Sunday ME (1984) Platelet-derived growth factor receptors form a high affinity state in membrane preparations. Kinetics and affinity cross-linking studies. J Biol Chem 259:5287–5294

    CAS  PubMed  Google Scholar 

  20. Hensey CE, Boscoboinik D, Azzi A (1989) Suramin, an anti-cancer drug, inhibits protein kinase C and induces differentiation in neuroblastoma cell clone NB2A. FEBS Lett 258:156–158

    Article  CAS  PubMed  Google Scholar 

  21. Buchinger B, Spitzer S, Karlic H, Klaushofer K, Varga F (2008) Lysyl oxidase (LOX) mRNA expression and genes of the differentiated osteoblastic phenotype are upregulated in human osteosarcoma cells by suramin. Cancer Lett 265:45–54

    Article  CAS  PubMed  Google Scholar 

  22. Wiese C, Nikolova T, Zahanich I, Sulzbacher S, Fuchs J et al (2011) Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol 147:95–111

    Article  PubMed  Google Scholar 

  23. Jiang S, Chen X, Li C, Zhang X, Zhang T et al (2012) Suramin inhibits the growth of nasopharyngeal carcinoma cells via the downregulation of osteopontin. Mol Med Rep 6:1351–1354

    CAS  PubMed  Google Scholar 

  24. Stein CA (1993) Suramin: a novel antineoplastic agent with multiple potential mechanisms of action. Cancer Res 53:2239–2248

    CAS  PubMed  Google Scholar 

  25. Bastea LI, Doppler H, Balogun B, Storz P (2012) Protein kinase D1 maintains the epithelial phenotype by inducing a DNA-bound, inactive SNAI1 transcriptional repressor complex. PLoS ONE 7:e30459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Du C, Zhang C, Hassan S, Biswas MH, Balaji KC (2010) Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 70:7810–7819

    Article  CAS  PubMed  Google Scholar 

  27. Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC (2003) Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun 307:254–260

    Article  CAS  PubMed  Google Scholar 

  28. Olayioye MA, Barisic S, Hausser A (2013) Multi-level control of actin dynamics by protein kinase D. Cell Signal 25:1739–1747

    Article  CAS  PubMed  Google Scholar 

  29. Storz P, Doppler H, Johannes FJ, Toker A (2003) Tyrosine phosphorylation of protein kinase D in the pleckstrin homology domain leads to activation. J Biol Chem 278:17969–17976

    Article  CAS  PubMed  Google Scholar 

  30. Cowell CF, Doppler H, Yan IK, Hausser A, Umezawa Y et al (2009) Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci 122:919–928

    Article  CAS  PubMed  Google Scholar 

  31. Guo H, Liu W, Ju Z, Tamboli P, Jonasch E et al (2012) An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays. Proteome Sci 10:56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vignon F, Prebois C, Rochefort H (1992) Inhibition of breast cancer growth by suramin. J Natl Cancer Inst 84:38–42

    Article  CAS  PubMed  Google Scholar 

  33. Song S, Yu B, Wei Y, Wientjes MG, Au JL (2004) Low-dose suramin enhanced paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast xenograft tumors. Clin Cancer Res 10:6058–6065

    Article  CAS  PubMed  Google Scholar 

  34. Waldron RT, Rozengurt E (2003) Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. J Biol Chem 278:154–163

    Article  CAS  PubMed  Google Scholar 

  35. Gschwendt M, Kittstein W, Johannes FJ (1998) Differential effects of suramin on protein kinase C isoenzymes. A novel tool for discriminating protein kinase C activities. FEBS Lett 421:165–168

    Article  CAS  PubMed  Google Scholar 

  36. Matthews SA, Rozengurt E, Cantrell D (1999) Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu. J Biol Chem 274:26543–26549

    Article  CAS  PubMed  Google Scholar 

  37. Storz P, Doppler H, Copland JA, Simpson KJ, Toker A (2009) FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol Cell Biol 29:4906–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bowden CJ, Figg WD, Dawson NA, Sartor O, Bitton RJ et al (1996) A phase I/II study of continuous infusion suramin in patients with hormone-refractory prostate cancer: toxicity and response. Cancer Chemother Pharmacol 39:1–8

    Article  CAS  PubMed  Google Scholar 

  39. Dreicer R, Smith DC, Williams RD, See WA (1999) Phase II trial of suramin in patients with metastatic renal cell carcinoma. Invest New Drugs 17:183–186

    Article  CAS  PubMed  Google Scholar 

  40. Falcone A, Pfanner E, Cianci C, Danesi R, Brunetti I et al (1995) Suramin in patients with metastatic colorectal cancer pretreated with fluoropyrimidine-based chemotherapy. A phase II study. Cancer 75:440–443

    Article  CAS  PubMed  Google Scholar 

  41. George S, Dreicer R, Au JJ, Shen T, Rini BI et al (2008) Phase I/II trial of 5-fluorouracil and a noncytotoxic dose level of suramin in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 6:79–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lustberg MB, Pant S, Ruppert AS, Shen T, Wei Y et al (2012) Phase I/II trial of non-cytotoxic suramin in combination with weekly paclitaxel in metastatic breast cancer treated with prior taxanes. Cancer Chemother Pharmacol 70:49–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Villalona-Calero MA, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T et al (2008) Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small-cell lung cancer: a phase II study. Ann Oncol 19:1903–1909

    Article  CAS  PubMed  Google Scholar 

  44. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D et al (2003) Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non-small cell lung cancer. Clin Cancer Res 9:3303–3311

    CAS  PubMed  Google Scholar 

  45. Song S, Wientjes MG, Gan Y, Au JL (2000) Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci U S A 97:8658–8663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Song S, Wientjes MG, Walsh C, Au JL (2001) Nontoxic doses of suramin enhance activity of paclitaxel against lung metastases. Cancer Res 61:6145–6150

    CAS  PubMed  Google Scholar 

  47. Zhang Y, Song S, Yang F, Au JL, Wientjes MG (2001) Nontoxic doses of suramin enhance activity of doxorubicin in prostate tumors. J Pharmacol Exp Ther 299:426–433

    CAS  PubMed  Google Scholar 

  48. Skliris GP, Munot K, Bell SM, Carder PJ, Lane S et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220

    Article  CAS  PubMed  Google Scholar 

  49. Zhu WG, Hileman T, Ke Y, Wang P, Lu S et al (2004) 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279:15161–15166

    Article  CAS  PubMed  Google Scholar 

  50. Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366

    Article  CAS  PubMed  Google Scholar 

  51. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Article  CAS  PubMed  Google Scholar 

  52. Eiseler T, Doppler H, Yan IK, Kitatani K, Mizuno K et al (2009) Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 11:545–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Eiseler T, Hausser A, De Kimpe L, Van Lint J, Pfizenmaier K (2010) Protein kinase D controls actin polymerization and cell motility through phosphorylation of cortactin. J Biol Chem 285:18672–18683

    Article  CAS  PubMed  Google Scholar 

  54. Eiseler T, Schmid MA, Topbas F, Pfizenmaier K, Hausser A (2007) PKD is recruited to sites of actin remodelling at the leading edge and negatively regulates cell migration. FEBS Lett 581:4279–4287

    Article  CAS  PubMed  Google Scholar 

  55. Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA et al (2009) Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res 69:5634–5638

    Article  CAS  PubMed  Google Scholar 

  56. Spratley SJ, Bastea LI, Doppler H, Mizuno K, Storz P (2011) Protein kinase D regulates cofilin activity through p21-activated kinase 4. J Biol Chem 286:34254–34261

    Article  CAS  PubMed  Google Scholar 

  57. Kim M, Jang HR, Kim JH, Noh SM, Song KS et al (2008) Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 29:629–637

    Article  CAS  PubMed  Google Scholar 

  58. Onishi Y, Kawamoto T, Kishimoto K, Hara H, Fukase N et al (2012) PKD1 negatively regulates cell invasion, migration and proliferation ability of human osteosarcoma. Int J Oncol 40:1839–1848

    CAS  PubMed  Google Scholar 

  59. Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM et al (2007) Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109:2579–2588

    Article  CAS  PubMed  Google Scholar 

  60. Sundram V, Chauhan SC, Ebeling M, Jaggi M (2012) Curcumin attenuates beta-catenin signaling in prostate cancer cells through activation of protein kinase D1. PLoS ONE 7:e35368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (GM086435) and the Bankhead-Coley Program of the Florida Department of Health (1BG11). Research reported in this publication was also supported by the National Cancer Institute of the National Institutes of Health under award number P50CA116201. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We also thank the Luther and Susie Harrison Foundation for their support, Irene K. Yan for technical assistance, and Alicia Fleming for help with the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Storz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, S., Döppler, H.R. & Storz, P. A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells. Breast Cancer Res Treat 144, 79–91 (2014). https://doi.org/10.1007/s10549-014-2857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2857-2

Keywords

Navigation