Skip to main content

Advertisement

Log in

PKA-induced phosphorylation of ERα at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Phosphorylation of estrogen receptor α at serine 305 (ERαS305-P) by protein kinase A (PKA) or p21-activated kinase 1 (PAK1) has experimentally been associated with tamoxifen sensitivity. Here, we investigated the clinical application of this knowledge to predict tamoxifen resistance in ER-positive breast cancer patients. Using immunohistochemistry, a score including PAK1 and co-expression of PKA and ERαS305-P (PKA/ERαS305-P) was developed on a training set consisting of 103 patients treated with tamoxifen for metastatic disease, and validated on 231 patients randomized between adjuvant tamoxifen or no treatment. In the training set, PAK1 levels were associated with tumor progression after tamoxifen (HR 1.57, 95% CI 0.99–2.48), as was co-expression of PKA and ERαS305-P (HR 2.00, 95% CI 1.14–3.52). In the validation set, a significant tamoxifen benefit was found among the 73% patients negative for PAK1 and PKA/ERαS305-P (HR 0.54, 95% CI 0.34–0.87), while others (27%) were likely to have no benefit from tamoxifen (HR 0.88, 95% 0.42–1.82). The test for interaction showed a significant difference in recurrence-free survival between groups defined by PAK1 and PKA/ERαS305-P (P = 0.037). Elevated PAK1 and PKA/ERαS305-P appeared to influence tamoxifen sensitivity. Both PAK1 and PKA/ERαS305-P levels were associated with sensitivity to tamoxifen in breast tumors and the combination of these variables should be considered in predicting tamoxifen benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pritchard KI (2003) Endocrine therapy of advanced disease: analysis and implications of the existing data. Clin Cancer Res 9:460S–467S

    CAS  PubMed  Google Scholar 

  2. O’Regan RM, Jordan VC (2002) The evolution of tamoxifen therapy in breast cancer: selective oestrogen-receptor modulators and downregulators. Lancet Oncol 3:207–214

    Article  PubMed  Google Scholar 

  3. Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 3:821–831

    Article  CAS  PubMed  Google Scholar 

  4. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    CAS  PubMed  Google Scholar 

  5. Osborne CK, Pippen J, Jones SE, Parker LM, Ellis M, Come S, Gertler SZ, May JT, Burton G, Dimery I, Webster A, Morris C, Elledge R, Buzdar A (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20:3386–3395

    Article  CAS  PubMed  Google Scholar 

  6. Howell A, Robertson JF, Quaresma Albano J, Aschermannova A, Mauriac L, Kleeberg UR, Vergote I, Erikstein B, Webster A, Morris C (2002) Fulvestrant, formerly ICI 182, 780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20:3396–3403

    Article  CAS  PubMed  Google Scholar 

  7. Miller WR, Bartlett JM, Canney P, Verrill M (2007) Hormonal therapy for postmenopausal breast cancer: the science of sequencing. Breast Cancer Res Treat 103:149–160

    Article  CAS  PubMed  Google Scholar 

  8. Rabaglio M, Aebi S, Castiglione-Gertsch M (2007) Controversies of adjuvant endocrine treatment for breast cancer and recommendations of the 2007 St Gallen conference. Lancet Oncol 8:940–949

    Article  CAS  PubMed  Google Scholar 

  9. Jordan VC, O’Malley BW (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 25:5815–5824

    Article  CAS  PubMed  Google Scholar 

  10. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  11. Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jalink K, Floore A, Velds A, Van’t Veer L, Neefjes J (2004) Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 5:597–605

    Article  CAS  PubMed  Google Scholar 

  12. Zwart W, Griekspoor A, Berno V, Lakeman K, Jalink K, Mancini M, Neefjes J, Michalides R (2007) PKA-induced resistance to tamoxifen is associated with an altered orientation of ERalpha towards co-activator SRC-1. EMBO J 26:3534–3544

    Article  CAS  PubMed  Google Scholar 

  13. Wang RA, Mazumdar A, Vadlamudi RK, Kumar R (2002) P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 21:5437–5447

    Article  CAS  PubMed  Google Scholar 

  14. Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA, Aldaz M, Khan S, Kumar R (2006) P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 66:1694–1701

    Article  CAS  PubMed  Google Scholar 

  15. Balasenthil S, Barnes CJ, Rayala SK, Kumar R (2004) Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Lett 567:243–247

    Article  CAS  PubMed  Google Scholar 

  16. Bostner J, Ahnstrom Waltersson M, Fornander T, Skoog L, Nordenskjold B, Stal O (2007) Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26:6997–7005

    Article  CAS  PubMed  Google Scholar 

  17. Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G (2006) Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 98:671–680

    Article  CAS  PubMed  Google Scholar 

  18. Holm C, Kok M, Michalides R, Fles R, Koornstra RH, Wesseling J, Hauptmann M, Neefjes J, Peterse JL, Stal O, Landberg G, Linn SC (2009) Phosphorylation of the oestrogen receptor alpha at serine 305 and prediction of tamoxifen resistance in breast cancer. J Pathol 217:372–379

    Article  CAS  PubMed  Google Scholar 

  19. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97:1180–1184

    Article  CAS  PubMed  Google Scholar 

  20. Kok M, Linn SC, Van Laar RK, Jansen MP, van den Berg TM, Delahaye LJ, Glas AM, Peterse JL, Hauptmann M, Foekens JA, Klijn JG, Wessels LF, Van’t Veer LJ, Berns EM (2009) Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Res Treat 113:275–283

    Article  CAS  PubMed  Google Scholar 

  21. Ryden L, Jirstrom K, Bendahl PO, Ferno M, Nordenskjold B, Stal O, Thorstenson S, Jonsson PE, Landberg G (2005) Tumor-specific expression of vascular endothelial growth factor receptor 2 but not vascular endothelial growth factor or human epidermal growth factor receptor 2 is associated with impaired response to adjuvant tamoxifen in premenopausal breast cancer. J Clin Oncol 23:4695–4704

    Article  CAS  PubMed  Google Scholar 

  22. Ryden L, Jonsson PE, Chebil G, Dufmats M, Ferno M, Jirstrom K, Kallstrom AC, Landberg G, Stal O, Thorstenson S, Nordenskjold B (2005) Two years of adjuvant tamoxifen in premenopausal patients with breast cancer: a randomised, controlled trial with long-term follow-up. Eur J Cancer 41:256–264

    Article  CAS  PubMed  Google Scholar 

  23. Liu CL, Montgomery KD, Natkunam Y, West RB, Nielsen TO, Cheang MC, Turbin DA, Marinelli RJ, van de Rijn M, Higgins JP (2005) TMA-combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Mod Pathol 18:1641–1648

    CAS  PubMed  Google Scholar 

  24. Beeser A, Jaffer ZM, Hofmann C, Chernoff J (2005) Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 280:36609–36615

    Article  CAS  PubMed  Google Scholar 

  25. Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  CAS  PubMed  Google Scholar 

  26. Xu X, Zhao Y, Simon R (2008) Gene set expression comparison kit for BRB array tools. Bioinformatics 24:137–139

    Article  CAS  PubMed  Google Scholar 

  27. BRB Array Tools Manual (Version 3.8), p. 70. http://linus.nci.nih.gov/~brb/download_individual_new.html

  28. Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85:87–94

    Article  Google Scholar 

  29. Moore MJ, Kanter JR, Jones KC, Taylor SS (2002) Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1. J Biol Chem 277:47878–47884

    Article  CAS  PubMed  Google Scholar 

  30. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  Google Scholar 

  31. Bezwoda WR, Esser JD, Dansey R, Kessel I, Lange M (1991) The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer 68:867–872

    Article  CAS  PubMed  Google Scholar 

  32. Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, Raffoul J, Neven P, Orosz Z, Braye S, Ohlschlegel C, Thurlimann B, Gelber RD, Castiglione-Gertsch M, Price KN, Goldhirsch A, Gusterson BA, Coates AS (2007) Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol 25:3846–3852

    Article  PubMed  Google Scholar 

  33. Miller WR, Hulme MJ, Bartlett JM, MacCallum J, Dixon JM (1997) Changes in messenger RNA expression of protein kinase A regulatory subunit ialpha in breast cancer patients treated with tamoxifen. Clin Cancer Res 3:2399–2404

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Desiree Verwoerd for technical assistance, Guus Hart for statistical advice, and Marieke Vollebergh, Stella Mook, Els Berns, and Stefan Sleijfer for critical reading. We thank Dr. Jonathan Chernoff and Dr. M Zaccolo for the generous gift of the expression constructs. This research was supported by Dutch Cancer Society, TI Pharma, A Sister’s Hope, Swedish Cancer Society, Malmö University Hospital Research and Cancer Funds and Astra Zeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Michalides.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kok, M., Zwart, W., Holm, C. et al. PKA-induced phosphorylation of ERα at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer. Breast Cancer Res Treat 125, 1–12 (2011). https://doi.org/10.1007/s10549-010-0798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0798-y

Keywords

Navigation